BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34906785)

  • 1. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis.
    Cafarchio A; Iasiello M; Vanoli GP; Andreozzi A
    Comput Biol Med; 2023 Dec; 167():107669. PubMed ID: 37948968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Sci Rep; 2021 Mar; 11(1):5272. PubMed ID: 33674658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 6. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of the pulsating heat source effects in a tumor tissue.
    Andreozzi A; Brunese L; Iasiello M; Tucci C; Vanoli GP
    Comput Methods Programs Biomed; 2021 Mar; 200():105887. PubMed ID: 33280933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short pulsed microwave ablation: computer modeling and
    Radosevic A; Prieto D; Burdío F; Berjano E; Prakash P; Trujillo M
    Int J Hyperthermia; 2021; 38(1):409-420. PubMed ID: 33719808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental assessment of microwave ablation computational modeling with MR thermometry.
    Faridi P; Keselman P; Fallahi H; Prakash P
    Med Phys; 2020 Sep; 47(9):3777-3788. PubMed ID: 32506550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Power for Microwave Slotted Probes in Ablating Different Hepatocellular Carcinoma Sizes.
    Ashour AS; Asran M; Fotiadis DI
    Comput Biol Med; 2020 Dec; 127():104101. PubMed ID: 33161335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
    Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K
    PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
    Liu D; Brace CL
    Phys Med Biol; 2017 Mar; 62(6):2070-2086. PubMed ID: 28151729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma.
    Imajo K; Ogawa Y; Yoneda M; Saito S; Nakajima A
    J Med Ultrason (2001); 2020 Apr; 47(2):265-277. PubMed ID: 31960190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional microwave ablation in spine: experimental assessment of computational modeling.
    Pfannenstiel A; Avellar H; Hallman C; Plattner BL; Highland MA; Cornelis FH; Beard WL; Prakash P
    Int J Hyperthermia; 2024; 41(1):2313492. PubMed ID: 38369302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.
    Satish V; Repaka R
    Electromagn Biol Med; 2024 Apr; 43(1-2):125-134. PubMed ID: 38533761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver microwave ablation: a systematic review of various FDA-approved systems.
    Ruiter SJS; Heerink WJ; de Jong KP
    Eur Radiol; 2019 Aug; 29(8):4026-4035. PubMed ID: 30506218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave ablation of hepatocellular carcinoma.
    Liang P; Wang Y
    Oncology; 2007; 72 Suppl 1():124-31. PubMed ID: 18087193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.