BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34906865)

  • 1. Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model.
    Urcun S; Rohan PY; Sciumè G; Bordas SPA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104952. PubMed ID: 34906865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle.
    Yang M; Taber LA
    J Biomech; 1991; 24(7):587-97. PubMed ID: 1880142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    J Mech Behav Biomed Mater; 2020 Feb; 102():103475. PubMed ID: 31627069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.
    Mehrabian A; Abousleiman YN; Mapstone TB; El-Amm CA
    J Theor Biol; 2015 Nov; 384():19-32. PubMed ID: 26277735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.
    Bergomi M; Cugnoni J; Galli M; Botsis J; Belser UC; Wiskott HW
    J Biomech; 2011 Jan; 44(1):34-8. PubMed ID: 20825940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.
    Leiderman R; Barbone PE; Oberai AA; Bamber JC
    Phys Med Biol; 2006 Dec; 51(24):6291-313. PubMed ID: 17148819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading.
    Stokes IA; Chegini S; Ferguson SJ; Gardner-Morse MG; Iatridis JC; Laible JP
    Ann Biomed Eng; 2010 May; 38(5):1780-8. PubMed ID: 20306136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical poroelastic model for ultrasound elastography imaging of tumors.
    Islam MT; Chaudhry A; Unnikrishnan G; Reddy JN; Righetti R
    Phys Med Biol; 2018 Jan; 63(2):025031. PubMed ID: 29336354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.
    Nowak J; Nowak B; Kaczmarek M
    Acta Bioeng Biomech; 2015; 17(4):39-48. PubMed ID: 26899777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.