These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34906865)

  • 21. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves.
    Müller TM; Gurevich B
    J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A poroelastic model of transcapillary flow in normal tissue.
    Speziale S; Tenti G; Sivaloganathan S
    Microvasc Res; 2008 Mar; 75(2):285-95. PubMed ID: 17707442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single and bi-compartment poro-elastic model of perfused biological soft tissues: FEniCSx implementation and tutorial.
    Lavigne T; Urcun S; Rohan PY; Sciumè G; Baroli D; Bordas SPA
    J Mech Behav Biomed Mater; 2023 Jul; 143():105902. PubMed ID: 37209595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell adhesion affects the properties of interstitial fluid flow: A study using multiscale poroelastic composite modeling.
    Dehghani H; Holzapfel GA; Mittelbronn M; Zilian A
    J Mech Behav Biomed Mater; 2024 May; 153():106486. PubMed ID: 38428205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of soft poroelastic tissue in time-harmonic MR elastography.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):598-608. PubMed ID: 19272864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of material models for anterior cruciate ligament in tension: from poroelastic to a novel fibril-reinforced nonlinear composite model.
    Ristaniemi A; Tanska P; Stenroth L; Finnilä MAJ; Korhonen RK
    J Biomech; 2021 Jan; 114():110141. PubMed ID: 33302181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-poromechanics model of fluid-saturated chemically active fibrous media.
    Misra A; Parthasarathy R; Singh V; Spencer P
    Z Angew Math Mech; 2015 Feb; 95(2):215-234. PubMed ID: 25755301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of negative dispersion by a nonlocal poroelastic theory.
    Chakraborty A
    J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.