These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34906878)

  • 1. A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale.
    Duque N; Bach PM; Scholten L; Fappiano F; Maurer M
    Water Res; 2022 Feb; 209():117903. PubMed ID: 34906878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring transitions of sewer wastewater infrastructure towards decentralisation using the modular model TURN-Sewers.
    Duque N; Scholten L; Maurer M
    Water Res; 2024 Jun; 257():121640. PubMed ID: 38776755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling micropollutant fate in sewer systems - A new systematic approach to support conceptual model construction based on in-sewer hydraulic retention time.
    Delli Compagni R; Polesel F; von Borries KJF; Zhang Z; Turolla A; Antonelli M; Vezzaro L
    J Environ Manage; 2019 Sep; 246():141-149. PubMed ID: 31176178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A risk-based approach to sanitary sewer pipe asset management.
    Baah K; Dubey B; Harvey R; McBean E
    Sci Total Environ; 2015 Feb; 505():1011-7. PubMed ID: 25461101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the efficiency of different CSO positions based on network graph characteristics.
    Sitzenfrei R; Urich C; Möderl M; Rauch W
    Water Sci Technol; 2013; 67(7):1574-80. PubMed ID: 23552247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmonized assessment of nutrient pollution from urban systems including losses from sewer exfiltration: a case study in Germany.
    Nguyen HH; Venohr M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63878-63893. PubMed ID: 33495958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydraulic capacity of deteriorating sewer systems.
    Pollert J; Ugarelli R; Saegrov S; Schilling W; Di Federico V
    Water Sci Technol; 2005; 52(12):207-14. PubMed ID: 16477988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems.
    Diogo AF; Barros LT; Santos J; Temido JS
    Sci Total Environ; 2018 Jan; 612():1042-1057. PubMed ID: 28892845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers.
    Harpaz C; Russo S; Leitão JP; Penn R
    Water Res; 2022 Jun; 216():118247. PubMed ID: 35344912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures.
    Eggimann S; Truffer B; Maurer M
    Water Res; 2015 Nov; 84():218-31. PubMed ID: 26247101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local effects of global climate change on the urban drainage system of Hamburg.
    Krieger K; Kuchenbecker A; Hüffmeyer N; Verworn HR
    Water Sci Technol; 2013; 68(5):1107-13. PubMed ID: 24037163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the potential for multi-location in-sewer heat recovery at a city scale under different seasonal scenarios.
    Abdel-Aal M; Schellart A; Kroll S; Mohamed M; Tait S
    Water Res; 2018 Nov; 145():618-630. PubMed ID: 30199806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A distributed heat transfer model for thermal-hydraulic analyses in sewer networks.
    Figueroa A; Hadengue B; Leitão JP; Rieckermann J; Blumensaat F
    Water Res; 2021 Oct; 204():117649. PubMed ID: 34543972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When does infrastructure hybridisation outperform centralised infrastructure paradigms? - Exploring economic and hydraulic impacts of decentralised urban wastewater system expansion.
    Duque N; Scholten L; Maurer M
    Water Res; 2024 May; 254():121327. PubMed ID: 38417266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model.
    Zhao Z; Yin H; Xu Z; Peng J; Yu Z
    Water Res; 2020 May; 175():115689. PubMed ID: 32199188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure.
    Roguet A; Newton RJ; Eren AM; McLellan SL
    mSystems; 2022 Aug; 7(4):e0011822. PubMed ID: 35762794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.
    Lee DG; Roehrdanz PR; Feraud M; Ervin J; Anumol T; Jia A; Park M; Tamez C; Morelius EW; Gardea-Torresdey JL; Izbicki J; Means JC; Snyder SA; Holden PA
    Water Res; 2015 Nov; 85():467-75. PubMed ID: 26379202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of self-cleansing sanitary sewer systems with the use of flushing devices.
    Goormans T; Engelen D; Bouteligier R; Willems P; Berlamont J
    Water Sci Technol; 2009; 60(4):901-8. PubMed ID: 19700828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing boundary conditions in sewer pipe/soil heat transfer modelling using physics-informed learning.
    Li J; Mohamad NNN; Sharma K; Yuan Z
    Water Res; 2023 Oct; 244():120441. PubMed ID: 37562102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady air flow model for large sewer networks: a theoretical framework.
    Zhang Q; Shao W; Zhu DZ; Xu W
    Water Sci Technol; 2020 Aug; 82(3):503-512. PubMed ID: 32960795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.