BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34907167)

  • 1. Identification of mitochondrial RNA polymerase as a potential therapeutic target of osteosarcoma.
    Han QC; Zhang XY; Yan PH; Chen SF; Liu FF; Zhu YR; Tian Q
    Cell Death Discov; 2021 Dec; 7(1):393. PubMed ID: 34907167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The requirement of mitochondrial RNA polymerase for non-small cell lung cancer cell growth.
    Zhou T; Sang YH; Cai S; Xu C; Shi MH
    Cell Death Dis; 2021 Jul; 12(8):751. PubMed ID: 34326320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer.
    Li X; Yao L; Wang T; Gu X; Wu Y; Jiang T
    Cell Death Dis; 2023 Oct; 14(10):665. PubMed ID: 37816734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting POLRMT by a first-in-class inhibitor IMT1 inhibits osteosarcoma cell growth in vitro and in vivo.
    Kong Y; Li X; Zhang H; Fu B; Jiang HY; Yang HL; Dai J
    Cell Death Dis; 2024 Jan; 15(1):57. PubMed ID: 38228583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial RNA polymerase POLRMT promotes skin squamous cell carcinoma cell growth.
    Wang Y; Ou L; Li X; Zheng T; Zhu WP; Li P; Wu L; Zhao T
    Cell Death Discov; 2022 Aug; 8(1):347. PubMed ID: 35922422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone acetyltransferase HBO1 functions as a novel oncogenic gene in osteosarcoma.
    Gao YY; Ling ZY; Zhu YR; Shi C; Wang Y; Zhang XY; Zhang ZQ; Jiang Q; Chen MB; Yang S; Cao C
    Theranostics; 2021; 11(10):4599-4615. PubMed ID: 33754016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first-in-class POLRMT specific inhibitor IMT1 suppresses endometrial carcinoma cell growth.
    Li SP; Ou L; Zhang Y; Shen FR; Chen YG
    Cell Death Dis; 2023 Feb; 14(2):152. PubMed ID: 36823110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADCK1 is a potential therapeutic target of osteosarcoma.
    Zhuo BB; Zhu LQ; Yao C; Wang XH; Li SX; Wang R; Li Y; Ling ZY
    Cell Death Dis; 2022 Nov; 13(11):954. PubMed ID: 36371387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Gαi3 as a promising target for osteosarcoma treatment.
    Bian ZJ; Shan HJ; Zhu YR; Shi C; Chen MB; Huang YM; Wang XD; Zhou XZ; Cao C
    Int J Biol Sci; 2022; 18(4):1508-1520. PubMed ID: 35280670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pro-tumorigenic activity of p38γ overexpression in nasopharyngeal carcinoma.
    Yin DP; Zheng YF; Sun P; Yao MY; Xie LX; Dou XW; Tian Y; Liu JS
    Cell Death Dis; 2022 Mar; 13(3):210. PubMed ID: 35246508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p38γ overexpression promotes osteosarcoma cell progression.
    Shi C; Cheng WN; Wang Y; Li DZ; Zhou LN; Zhu YC; Zhou XZ
    Aging (Albany NY); 2020 Sep; 12(18):18384-18395. PubMed ID: 32970611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer.
    Zhao LH; Li Q; Huang ZJ; Sun MX; Lu JJ; Zhang XH; Li G; Wu F
    Cell Death Dis; 2021 Oct; 12(11):974. PubMed ID: 34671018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HOXC13-driven TIMM13 overexpression promotes osteosarcoma cell growth.
    Han Q; Yan P; Song R; Liu F; Tian Q
    Cell Death Dis; 2023 Jul; 14(7):398. PubMed ID: 37407582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting mitochondrial RNA polymerase in acute myeloid leukemia.
    Bralha FN; Liyanage SU; Hurren R; Wang X; Son MH; Fung TA; Chingcuanco FB; Tung AY; Andreazza AC; Psarianos P; Schimmer AD; Salmena L; Laposa RR
    Oncotarget; 2015 Nov; 6(35):37216-28. PubMed ID: 26484416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Downregulation of Herg1 suppresses osteosarcoma proliferation and invasion by targeting Hippo signaling pathway].
    Chen ZD; Ye WB; Zeng WR; Song C; Song W; Zhang YM; Wu J
    Zhonghua Zhong Liu Za Zhi; 2019 May; 41(5):338-345. PubMed ID: 31137166
    [No Abstract]   [Full Text] [Related]  

  • 16. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.
    Kühl I; Miranda M; Posse V; Milenkovic D; Mourier A; Siira SJ; Bonekamp NA; Neumann U; Filipovska A; Polosa PL; Gustafsson CM; Larsson NG
    Sci Adv; 2016 Aug; 2(8):e1600963. PubMed ID: 27532055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition.
    Arnold JJ; Smidansky ED; Moustafa IM; Cameron CE
    Biochim Biophys Acta; 2012; 1819(9-10):948-60. PubMed ID: 22551784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated expression of mitochondrial transcription elongation factor (TEFM) predicts poor prognosis in low grade glioma-an analysis of the Cancer Genome Atlas (TCGA) dataset.
    Li S; Wang W; Zi J; Sun M; Mei W; Yang N; Zhang R; Yu M; Xiong W
    Transl Cancer Res; 2020 May; 9(5):3610-3622. PubMed ID: 35117724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression.
    Yan W; Xie C; Sun S; Zheng Q; Wang J; Wang Z; Man CH; Wang H; Yang Y; Wang T; Shi L; Zhang S; Huang C; Xu S; Wang YP
    EMBO J; 2024 Apr; ():. PubMed ID: 38649537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIMM44 is a potential therapeutic target of human glioma.
    Guo YZ; Chen G; Huang M; Wang Y; Liu YY; Jiang Q; Cao C; Liu F
    Theranostics; 2022; 12(17):7586-7602. PubMed ID: 36438483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.