These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34907176)

  • 1. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.
    Unke OT; Chmiela S; Gastegger M; Schütt KT; Sauceda HE; Müller KR
    Nat Commun; 2021 Dec; 12(1):7273. PubMed ID: 34907176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.
    Schütt KT; Gastegger M; Tkatchenko A; Müller KR; Maurer RJ
    Nat Commun; 2019 Nov; 10(1):5024. PubMed ID: 31729373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy of semiempirical models and machine learning in computational chemistry.
    Fedik N; Nebgen B; Lubbers N; Barros K; Kulichenko M; Li YW; Zubatyuk R; Messerly R; Isayev O; Tretiak S
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learned coarse-grained protein force-fields: Are we there yet?
    Durumeric AEP; Charron NE; Templeton C; Musil F; Bonneau K; Pasos-Trejo AS; Chen Y; Kelkar A; Noé F; Clementi C
    Curr Opin Struct Biol; 2023 Apr; 79():102533. PubMed ID: 36731338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
    Unke OT; Meuwly M
    J Chem Theory Comput; 2019 Jun; 15(6):3678-3693. PubMed ID: 31042390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio quantum chemistry with neural-network wavefunctions.
    Hermann J; Spencer J; Choo K; Mezzacapo A; Foulkes WMC; Pfau D; Carleo G; Noé F
    Nat Rev Chem; 2023 Oct; 7(10):692-709. PubMed ID: 37558761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances toward a general purpose linear-scaling quantum force field.
    Giese TJ; Huang M; Chen H; York DM
    Acc Chem Res; 2014 Sep; 47(9):2812-20. PubMed ID: 24937206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate global machine learning force fields for molecules with hundreds of atoms.
    Chmiela S; Vassilev-Galindo V; Unke OT; Kabylda A; Sauceda HE; Tkatchenko A; Müller KR
    Sci Adv; 2023 Jan; 9(2):eadf0873. PubMed ID: 36630510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning a Local-Variable Model of Aromatic and Conjugated Systems.
    Matlock MK; Dang NL; Swamidass SJ
    ACS Cent Sci; 2018 Jan; 4(1):52-62. PubMed ID: 29392176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Force Fields.
    Unke OT; Chmiela S; Sauceda HE; Gastegger M; Poltavsky I; Schütt KT; Tkatchenko A; Müller KR
    Chem Rev; 2021 Aug; 121(16):10142-10186. PubMed ID: 33705118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks for predicting charge transfer coupling.
    Wang CI; Joanito I; Lan CF; Hsu CP
    J Chem Phys; 2020 Dec; 153(21):214113. PubMed ID: 33291923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Δ-Machine Learned Potential Energy Surfaces and Force Fields.
    Bowman JM; Qu C; Conte R; Nandi A; Houston PL; Yu Q
    J Chem Theory Comput; 2023 Jan; 19(1):1-17. PubMed ID: 36527383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of time-dependent optimal control fields.
    Wang X; Kumar A; Shelton CR; Wong BM
    Phys Chem Chem Phys; 2020 Oct; 22(40):22889-22899. PubMed ID: 32935687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Electronic Response Properties with an Explicit-Electron Machine Learning Potential.
    Cools-Ceuppens M; Dambre J; Verstraelen T
    J Chem Theory Comput; 2022 Mar; 18(3):1672-1691. PubMed ID: 35171606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SchNet - A deep learning architecture for molecules and materials.
    Schütt KT; Sauceda HE; Kindermans PJ; Tkatchenko A; Müller KR
    J Chem Phys; 2018 Jun; 148(24):241722. PubMed ID: 29960322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.