These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34907198)

  • 1. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth.
    Hu J; Liu L; Gurnis M
    Nat Commun; 2021 Dec; 12(1):7271. PubMed ID: 34907198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow.
    Schellart WP
    Nat Commun; 2017 Dec; 8(1):2010. PubMed ID: 29222524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Southward propagation of Nazca subduction along the Andes.
    Chen YW; Wu J; Suppe J
    Nature; 2019 Jan; 565(7740):441-447. PubMed ID: 30675041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline.
    Capitanio FA; Faccenna C; Zlotnik S; Stegman DR
    Nature; 2011 Nov; 480(7375):83-6. PubMed ID: 22113613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of tectonics and climate on elevated arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile.
    Tapia J; Mukherjee A; Rodríguez MP; Murray J; Bhattacharya P
    Environ Pollut; 2022 Dec; 314():120151. PubMed ID: 36115482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oblique subduction modelling indicates along-trench tectonic transport of sediments.
    Malatesta C; Gerya T; Crispini L; Federico L; Capponi G
    Nat Commun; 2013; 4():2456. PubMed ID: 24030161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cenozoic climate change as a possible cause for the rise of the Andes.
    Lamb S; Davis P
    Nature; 2003 Oct; 425(6960):792-7. PubMed ID: 14574402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GNSS Constraints to Active Tectonic Deformations of the South American Continental Margin in Ecuador.
    Tamay J; Galindo-Zaldivar J; Soto J; Gil AJ
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block.
    Zuo X; Chan LS; Gao JF
    PLoS One; 2017; 12(2):e0171536. PubMed ID: 28182640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems.
    Kneller EA; van Keken PE
    Nature; 2007 Dec; 450(7173):1222-5. PubMed ID: 18097407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models.
    Quiero F; Tassara A; Iaffaldano G; Rabbia O
    Nat Commun; 2022 Mar; 13(1):1339. PubMed ID: 35292661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of subduction and evaluation of Philippine Sea Plate tectonic history along the Nankai Trough.
    Moreno EJ; Manea VC; Manea M; Yoshioka S; Suenaga N; Bayona A
    Sci Rep; 2023 Oct; 13(1):18313. PubMed ID: 37880308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early exhumation of the Frontal Cordillera (Southern Central Andes) and implications for Andean mountain-building at ~33.5°S.
    Riesner M; Simoes M; Carrizo D; Lacassin R
    Sci Rep; 2019 May; 9(1):7972. PubMed ID: 31138862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of continental accretion.
    Moresi L; Betts PG; Miller MS; Cayley RA
    Nature; 2014 Apr; 508(7495):245-8. PubMed ID: 24670638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.
    Schellart WP; Stegman DR; Farrington RJ; Freeman J; Moresi L
    Science; 2010 Jul; 329(5989):316-9. PubMed ID: 20647465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional crustal thickness and precipitation in young mountain chains.
    Ernst WG
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):14998-5001. PubMed ID: 15471988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.
    Schepers G; van Hinsbergen DJJ; Spakman W; Kosters ME; Boschman LM; McQuarrie N
    Nat Commun; 2017 May; 8():15249. PubMed ID: 28508893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and diversity of subduction zones controlled by slab width.
    Schellart WP; Freeman J; Stegman DR; Moresi L; May D
    Nature; 2007 Mar; 446(7133):308-11. PubMed ID: 17361181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic link between Neo-Tethyan subduction and atmospheric CO
    Shen H; Zhao L; Guo Z; Yuan H; Yang J; Wang X; Guo Z; Deng C; Wu F
    Sci Bull (Beijing); 2023 Mar; 68(6):637-644. PubMed ID: 36907675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycles of Andean mountain building archived in the Amazon Fan.
    Mason CC; Romans BW; Patterson MO; Stockli DF; Fildani A
    Nat Commun; 2022 Nov; 13(1):6983. PubMed ID: 36379929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.