These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Functional Specialization in Zamorano-Sánchez D; Xian W; Lee CK; Salinas M; Thongsomboon W; Cegelski L; Wong GCL; Yildiz FH mBio; 2019 Apr; 10(2):. PubMed ID: 31015332 [No Abstract] [Full Text] [Related]
6. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Ayala JC; Wang H; Silva AJ; Benitez JA Mol Microbiol; 2015 Aug; 97(4):630-45. PubMed ID: 25982817 [TBL] [Abstract][Full Text] [Related]
7. Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae. Fernandez NL; Srivastava D; Ngouajio AL; Waters CM J Bacteriol; 2018 Aug; 200(15):. PubMed ID: 29610212 [TBL] [Abstract][Full Text] [Related]
8. Cyclic di-GMP Increases Catalase Production and Hydrogen Peroxide Tolerance in Fernandez NL; Waters CM Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31300398 [No Abstract] [Full Text] [Related]
9. The Vibrio cholerae diguanylate cyclase VCA0965 has an AGDEF active site and synthesizes cyclic di-GMP. Hunter JL; Severin GB; Koestler BJ; Waters CM BMC Microbiol; 2014 Feb; 14():22. PubMed ID: 24490592 [TBL] [Abstract][Full Text] [Related]
10. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. Wu DC; Zamorano-Sánchez D; Pagliai FA; Park JH; Floyd KA; Lee CK; Kitts G; Rose CB; Bilotta EM; Wong GCL; Yildiz FH PLoS Genet; 2020 Mar; 16(3):e1008703. PubMed ID: 32176702 [TBL] [Abstract][Full Text] [Related]
11. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. Waters CM; Lu W; Rabinowitz JD; Bassler BL J Bacteriol; 2008 Apr; 190(7):2527-36. PubMed ID: 18223081 [TBL] [Abstract][Full Text] [Related]
12. Structure of the active GGEEF domain of a diguanylate cyclase from Vibrio cholerae. Chouhan OP; Roske Y; Heinemann U; Biswas S Biochem Biophys Res Commun; 2020 Mar; 523(2):287-292. PubMed ID: 31862141 [TBL] [Abstract][Full Text] [Related]
13. Quantification of high-specificity cyclic diguanylate signaling. Massie JP; Reynolds EL; Koestler BJ; Cong JP; Agostoni M; Waters CM Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12746-51. PubMed ID: 22802636 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. Beyhan S; Odell LS; Yildiz FH J Bacteriol; 2008 Nov; 190(22):7392-405. PubMed ID: 18790873 [TBL] [Abstract][Full Text] [Related]
15. N-terminal truncation of VC0395_0300 protein from Vibrio cholerae does not lead to loss of diguanylate cyclase activity. Bandekar D; Mohapatra S; Hazra M; Hazra S; Biswas S Biophys Chem; 2021 Jan; 268():106493. PubMed ID: 33152620 [TBL] [Abstract][Full Text] [Related]
16. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. Lim B; Beyhan S; Yildiz FH J Bacteriol; 2007 Feb; 189(3):717-29. PubMed ID: 17122338 [TBL] [Abstract][Full Text] [Related]
17. Putative protein VC0395_0300 from Vibrio cholerae is a diguanylate cyclase with a role in biofilm formation. Bandekar D; Chouhan OP; Mohapatra S; Hazra M; Hazra S; Biswas S Microbiol Res; 2017 Sep; 202():61-70. PubMed ID: 28647124 [TBL] [Abstract][Full Text] [Related]