BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 34908175)

  • 1. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning.
    Montoya JC; Zhang C; Li Y; Li K; Chen GH
    Med Phys; 2022 Feb; 49(2):901-916. PubMed ID: 34908175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values.
    McMillan K; Bostani M; Cagnon CH; Yu L; Leng S; McCollough CH; McNitt-Gray MF
    Med Phys; 2017 Aug; 44(8):4262-4275. PubMed ID: 28477342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.
    Rui X; Cheng L; Long Y; Fu L; Alessio AM; Asma E; Kinahan PE; De Man B
    Phys Med Biol; 2015 Oct; 60(19):7437-60. PubMed ID: 26352168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time, acquisition parameter-free voxel-wise patient-specific Monte Carlo dose reconstruction in whole-body CT scanning using deep neural networks.
    Salimi Y; Akhavanallaf A; Mansouri Z; Shiri I; Zaidi H
    Eur Radiol; 2023 Dec; 33(12):9411-9424. PubMed ID: 37368113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optimization algorithm for dose reduction with fluence-modulated proton CT.
    Dickmann J; Rit S; Pankuch M; Johnson RP; Schulte RW; Parodi K; Dedes G; Landry G
    Med Phys; 2020 Apr; 47(4):1895-1906. PubMed ID: 32040212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 7. Compensator models for fluence field modulated computed tomography.
    Bartolac S; Jaffray D
    Med Phys; 2013 Dec; 40(12):121909. PubMed ID: 24320520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS).
    Zhang C; Li Y; Chen GH
    Med Phys; 2021 Oct; 48(10):5765-5781. PubMed ID: 34458996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CONSORT-compliant prospective randomized controlled trial: radiation dose reducing in computed tomography using an additional lateral scout view combined with automatic tube current modulation: Phantom and patient study.
    Peng W; Li Z; Xia C; Guo Y; Zhang J; Zhang K; Li L; Zhao F
    Medicine (Baltimore); 2017 Jul; 96(30):e7324. PubMed ID: 28746180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolution-based estimation of organ dose in tube current modulated CT.
    Tian X; Segars WP; Dixon RL; Samei E
    Phys Med Biol; 2016 May; 61(10):3935-54. PubMed ID: 27119974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scout view X-ray attenuation versus weight-based selection of reduced peak tube voltage in cardiac CT angiography.
    Ghafourian K; Younes D; Simprini LA; Weigold WG; Weissman G; Taylor AJ
    JACC Cardiovasc Imaging; 2012 Jun; 5(6):589-95. PubMed ID: 22698527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of fluence field modulation to proton computed tomography for proton therapy imaging.
    Dedes G; De Angelis L; Rit S; Hansen D; Belka C; Bashkirov V; Johnson RP; Coutrakon G; Schubert KE; Schulte RW; Parodi K; Landry G
    Phys Med Biol; 2017 Jul; 62(15):6026-6043. PubMed ID: 28582265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.
    Solomon J; Lyu P; Marin D; Samei E
    Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time estimation of patient-specific dose distributions for medical CT using the deep dose estimation.
    Maier J; Klein L; Eulig E; Sawall S; Kachelrieß M
    Med Phys; 2022 Apr; 49(4):2259-2269. PubMed ID: 35107176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective estimation of organ dose in CT under tube current modulation.
    Tian X; Li X; Segars WP; Frush DP; Samei E
    Med Phys; 2015 Apr; 42(4):1575-85. PubMed ID: 25832048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [New Potential Method for Optimizing the ATCM Technique in Pediatric CT Examination].
    Yoshiura T; Masuda T; Matsumoto Y; Sato T; Kikuhara Y; Kobayashi Y; Ishibashi T; Oku T; Funama Y
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(8):802-807. PubMed ID: 32814735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quality-checked and physics-constrained deep learning method to estimate material basis images from single-kV contrast-enhanced chest CT scans.
    Li Y; Tie X; Li K; Zhang R; Qi Z; Budde A; Grist TM; Chen GH
    Med Phys; 2023 Jun; 50(6):3368-3388. PubMed ID: 36908250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning.
    Yin Z; Yao Y; Montillo A; Wu M; Edic PM; Kalra M; De Man B
    Med Phys; 2015 May; 42(5):2730-9. PubMed ID: 25979071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.