BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34908226)

  • 21. A signal-to-noise crossover dose as the point of departure for health risk assessment.
    Sand S; Portier CJ; Krewski D
    Environ Health Perspect; 2011 Dec; 119(12):1766-74. PubMed ID: 21813365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current modeling practice may lead to falsely high benchmark dose estimates.
    Ringblom J; Johanson G; Öberg M
    Regul Toxicol Pharmacol; 2014 Jul; 69(2):171-7. PubMed ID: 24662478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmark dose approaches in chemical health risk assessment in relation to number and distress of laboratory animals.
    Oberg M
    Regul Toxicol Pharmacol; 2010 Dec; 58(3):451-4. PubMed ID: 20800084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an occupational exposure limit for n-propylbromide using benchmark dose methods.
    Stelljes ME; Wood RR
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):136-50. PubMed ID: 15450717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Review of Recent Advances in Benchmark Dose Methodology.
    Jensen SM; Kluxen FM; Ritz C
    Risk Anal; 2019 Oct; 39(10):2295-2315. PubMed ID: 31046141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Application of benchmark dose method in reproduction/developmental toxicity screening test].
    Zheng M; Zhao W; Cheng J; Shen M; Zhang M; Wu Z
    Wei Sheng Yan Jiu; 2017 Mar; 46(2):291-297. PubMed ID: 29903110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data.
    Shao K; Gift JS
    Risk Anal; 2014 Jan; 34(1):101-20. PubMed ID: 23758102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in benchmark dose (BMD) and the 95% lower confidence limit of benchmark dose (BMDL) among general Japanese populations with no anthropogenic exposure to cadmium.
    Sakuragi S; Takahashi K; Hoshuyama T; Moriguchi J; Ohashi F; Fukui Y; Ikeda M
    Int Arch Occup Environ Health; 2012 Nov; 85(8):941-50. PubMed ID: 22270387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints.
    Sand S; von Rosen D; Victorin K; Filipsson AF
    Toxicol Sci; 2006 Mar; 90(1):241-51. PubMed ID: 16322076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the benchmark dose method for dichotomous data: model dependence and model selection.
    Sand S; Filipsson AF; Victorin K
    Regul Toxicol Pharmacol; 2002 Oct; 36(2):184-97. PubMed ID: 12460753
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Jensen SM; Kluxen FM; Streibig JC; Cedergreen N; Ritz C
    PeerJ; 2020; 8():e10557. PubMed ID: 33362981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Application of the benchmark dose approach to epidemiological endpoints with clinical standards].
    Murata K; Karita K; Horiguchi H; Iwata T; Hirose A
    Sangyo Eiseigaku Zasshi; 2011; 53(3):67-77. PubMed ID: 21467775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guidance on the use of the benchmark dose approach in risk assessment.
    ; More SJ; Bampidis V; Benford D; Bragard C; Halldorsson TI; Hernández-Jerez AF; Bennekou SH; Koutsoumanis K; Lambré C; Machera K; Mennes W; Mullins E; Nielsen SS; Schrenk D; Turck D; Younes M; Aerts M; Edler L; Sand S; Wright M; Binaglia M; Bottex B; Abrahantes JC; Schlatter J
    EFSA J; 2022 Oct; 20(10):e07584. PubMed ID: 36304832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of the Benchmark Dose Method to the Incidence Data for Various Pathological Findings and Its Validation Analysis].
    Inoue K; Shigeta Y; Umemura T; Nishiura H; Hirose A
    Shokuhin Eiseigaku Zasshi; 2021; 62(2):56-64. PubMed ID: 33883337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study parameters influencing NOAEL and LOAEL in toxicity feeding studies for pesticides: exposure duration versus dose decrement, dose spacing, group size and chemical class.
    Zarn JA; Engeli BE; Schlatter JR
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):243-50. PubMed ID: 21875639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benchmark dose modeling for epidemiological dose-response assessment using prospective cohort studies.
    De Pretis F; Zhou Y; Xun P; Shao K
    Risk Anal; 2024 Apr; 44(4):743-756. PubMed ID: 37496455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational system for Bayesian benchmark dose estimation of genomic data in BBMD.
    Ji C; Weissmann A; Shao K
    Environ Int; 2022 Mar; 161():107135. PubMed ID: 35151117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benchmark dose analysis framework for developing wildlife toxicity reference values.
    Mayfield DB; Skall DG
    Environ Toxicol Chem; 2018 May; 37(5):1496-1508. PubMed ID: 29315767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a benchmark dose for lead-exposure based on its induction of micronuclei, telomere length changes and hematological toxicity.
    Wang T; Tu Y; Zhang G; Gong S; Wang K; Zhang Y; Meng Y; Wang T; Li A; Christiani DC; Au W; Zhu Y; Xia ZL
    Environ Int; 2020 Dec; 145():106129. PubMed ID: 32950787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A health risk benchmark for the neurologic effects of styrene: comparison with NOAEL/LOAEL approach.
    Rabovsky J; Fowles J; Hill MD; Lewis DC
    Risk Anal; 2001 Feb; 21(1):117-26. PubMed ID: 11332541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.