These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 34908548)
1. Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery. Yan X; Goldsmith J; Mohan S; Turnbull ZA; Freundlich RE; Billings FT; Kiran RP; Li G; Kim M Anesth Analg; 2022 Jan; 134(1):102-113. PubMed ID: 34908548 [TBL] [Abstract][Full Text] [Related]
2. Using machine learning to predict outcomes following carotid endarterectomy. Li B; Beaton D; Eisenberg N; Lee DS; Wijeysundera DN; Lindsay TF; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M J Vasc Surg; 2023 Oct; 78(4):973-987.e6. PubMed ID: 37211142 [TBL] [Abstract][Full Text] [Related]
3. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study. Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452 [TBL] [Abstract][Full Text] [Related]
4. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning model for predicting 30-day postoperative mortality. Fritz BA; Cui Z; Zhang M; He Y; Chen Y; Kronzer A; Ben Abdallah A; King CR; Avidan MS Br J Anaesth; 2019 Nov; 123(5):688-695. PubMed ID: 31558311 [TBL] [Abstract][Full Text] [Related]
6. Intraoperative Data Enhance the Detection of High-Risk Acute Kidney Injury Patients When Added to a Baseline Prediction Model. Kim M; Li G; Mohan S; Turnbull ZA; Kiran RP; Li G Anesth Analg; 2021 Feb; 132(2):430-441. PubMed ID: 32769380 [TBL] [Abstract][Full Text] [Related]
7. Using machine learning to predict outcomes following suprainguinal bypass. Li B; Eisenberg N; Beaton D; Lee DS; Aljabri B; Wijeysundera DN; Rotstein OD; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M J Vasc Surg; 2024 Mar; 79(3):593-608.e8. PubMed ID: 37804954 [TBL] [Abstract][Full Text] [Related]
8. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty. Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804 [TBL] [Abstract][Full Text] [Related]
9. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
10. Electronic Medical Record-Based Machine Learning Approach to Predict the Risk of 30-Day Adverse Cardiac Events After Invasive Coronary Treatment: Machine Learning Model Development and Validation. Kwon O; Na W; Kang H; Jun TJ; Kweon J; Park GM; Cho Y; Hur C; Chae J; Kang DY; Lee PH; Ahn JM; Park DW; Kang SJ; Lee SW; Lee CW; Park SW; Park SJ; Yang DH; Kim YH JMIR Med Inform; 2022 May; 10(5):e26801. PubMed ID: 35544292 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study. Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200 [TBL] [Abstract][Full Text] [Related]
12. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589 [TBL] [Abstract][Full Text] [Related]
14. Prediction and Evaluation of Machine Learning Algorithm for Prediction of Blood Transfusion during Cesarean Section and Analysis of Risk Factors of Hypothermia during Anesthesia Recovery. Ren W; Li D; Wang J; Zhang J; Fu Z; Yao Y Comput Math Methods Med; 2022; 2022():8661324. PubMed ID: 35465016 [TBL] [Abstract][Full Text] [Related]
15. Risk Stratification for Postoperative Acute Kidney Injury in Major Noncardiac Surgery Using Preoperative and Intraoperative Data. Lei VJ; Luong T; Shan E; Chen X; Neuman MD; Eneanya ND; Polsky DE; Volpp KG; Fleisher LA; Holmes JH; Navathe AS JAMA Netw Open; 2019 Dec; 2(12):e1916921. PubMed ID: 31808922 [TBL] [Abstract][Full Text] [Related]
16. A novel surgical predictive model for Chinese Crohn's disease patients. Dong Y; Xu L; Fan Y; Xiang P; Gao X; Chen Y; Zhang W; Ge Q Medicine (Baltimore); 2019 Nov; 98(46):e17510. PubMed ID: 31725605 [TBL] [Abstract][Full Text] [Related]
17. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms. Wang Y; Sun X; Lu J; Zhong L; Yang Z Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811 [TBL] [Abstract][Full Text] [Related]
18. Decision Curve Analysis of In-Hospital Mortality Prediction Models: The Relative Value of Pre- and Intraoperative Data For Decision-Making. Huber M; Bello C; Schober P; Filipovic MG; Luedi MM Anesth Analg; 2024 Sep; 139(3):617-28. PubMed ID: 38315623 [TBL] [Abstract][Full Text] [Related]
19. Using machine learning to predict outcomes following open abdominal aortic aneurysm repair. Li B; Aljabri B; Verma R; Beaton D; Eisenberg N; Lee DS; Wijeysundera DN; Forbes TL; Rotstein OD; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M J Vasc Surg; 2023 Dec; 78(6):1426-1438.e6. PubMed ID: 37634621 [TBL] [Abstract][Full Text] [Related]
20. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]