These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34908645)

  • 1. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry.
    Han M; Ooka R; Kikumoto H; Oh W; Bu Y; Hu S
    Build Environ; 2021 Nov; 205():108293. PubMed ID: 34908645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of exhaled airflow velocity through human coughs using particle image velocimetry.
    Han M; Ooka R; Kikumoto H; Oh W; Bu Y; Hu S
    Build Environ; 2021 Sep; 202():108020. PubMed ID: 34127875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of sneeze airflow and its validation with an experimental dataset.
    Oh W; Ooka R; Kikumoto H; Han M
    Indoor Air; 2022 Nov; 32(11):e13171. PubMed ID: 36437664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the initial velocity distribution of exhaled air from coughing and speaking.
    Kwon SB; Park J; Jang J; Cho Y; Park DS; Kim C; Bae GN; Jang A
    Chemosphere; 2012 Jun; 87(11):1260-4. PubMed ID: 22342283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of droplet-conveyed infectious agents such as SARS-CoV-2 by speech and vocal exercises during speech therapy: preliminary experiment concerning airflow velocity.
    Giovanni A; Radulesco T; Bouchet G; Mattei A; Révis J; Bogdanski E; Michel J
    Eur Arch Otorhinolaryngol; 2021 May; 278(5):1687-1692. PubMed ID: 32676677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new methodology for studying dynamics of aerosol particles in sneeze and cough using a digital high-vision, high-speed video system and vector analyses.
    Nishimura H; Sakata S; Kaga A
    PLoS One; 2013; 8(11):e80244. PubMed ID: 24312206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizations of particle size distribution of the droplets exhaled by sneeze.
    Han ZY; Weng WG; Huang QY
    J R Soc Interface; 2013 Nov; 10(88):20130560. PubMed ID: 24026469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough.
    Pendar MR; Páscoa JC
    Phys Fluids (1994); 2020 Aug; 32(8):083305. PubMed ID: 35002198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols.
    Tang JW; Nicolle AD; Klettner CA; Pantelic J; Wang L; Suhaimi AB; Tan AY; Ong GW; Su R; Sekhar C; Cheong DD; Tham KW
    PLoS One; 2013; 8(4):e59970. PubMed ID: 23560060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human exhalation characterization with the aid of schlieren imaging technique.
    Xu C; Nielsen PV; Liu L; Jensen RL; Gong G
    Build Environ; 2017 Feb; 112():190-199. PubMed ID: 32287969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations of pressure and velocity fields in a human upper airway during sneezing.
    Rahiminejad M; Haghighi A; Dastan A; Abouali O; Farid M; Ahmadi G
    Comput Biol Med; 2016 Apr; 71():115-27. PubMed ID: 26914240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the Flow Field Generated by Multicopter Propellers.
    Czyż Z; Karpiński P; Stryczniewicz W
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on the applied techniques of exhaled airflow and droplets characterization.
    Mahjoub Mohammed Merghani K; Sagot B; Gehin E; Da G; Motzkus C
    Indoor Air; 2021 Jan; 31(1):7-25. PubMed ID: 33206424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.
    van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ
    NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of PVDF sensor array for determining airflow direction and velocity.
    Hu J; Peng H; Yao X
    Rev Sci Instrum; 2018 Aug; 89(8):085007. PubMed ID: 30184684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echo particle image velocimetry.
    DeMarchi N; White C
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental framework to capture the flow dynamics of droplets expelled by a sneeze.
    Bahl P; de Silva CM; Chughtai AA; MacIntyre CR; Doolan C
    Exp Fluids; 2020; 61(8):176. PubMed ID: 32834458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways.
    Karim RA; Mohammed JR
    Heliyon; 2020 Oct; 6(10):e05165. PubMed ID: 33088948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of a sneeze, a cough and a continuum speech inside a hospital lift.
    Chillón SA; Fernandez-Gamiz U; Zulueta E; Ugarte-Anero A; Urbina-Garcia O
    Heliyon; 2023 Feb; 9(2):e13370. PubMed ID: 36744064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.