These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 3490869)

  • 21. Complement activation and neutrophil aggregation changes during haemodialysis.
    Kubatiev A; Rudko I; Ermolenko V
    Int J Clin Pharmacol Res; 1993; 13(6):293-9. PubMed ID: 8088929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leukocyte overshoot: a new sign of bioincompatibility in fast hemodialysis.
    Kjellstrand P; Jacobson SH; Skröder R; Holmquist B; Boberg U; Lins LE; Okmark P; Kjellstrand CM
    ASAIO Trans; 1990; 36(3):M314-6. PubMed ID: 2252687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis.
    Bergström J; Wehle B
    Lancet; 1987 Mar; 1(8533):628-9. PubMed ID: 2881162
    [No Abstract]   [Full Text] [Related]  

  • 24. Assembly of terminal SC5b-9 complement complexes: a new index of blood-membrane interaction.
    Schaefer RM; Rauterberg EW; Deppisch R; Vienken J
    Miner Electrolyte Metab; 1990; 16(1):73-6. PubMed ID: 2325595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of immunoglobulin and interleukin-6 production from peripheral blood mononuclear cells by dialysis membranes.
    Paczek L; Schafer RM; Teschner M; Heidland A
    ASAIO Trans; 1990; 36(3):459-61. PubMed ID: 2252806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cardiopulmonary manifestations of blood-dialyzer (new and reused) interactions in an animal model.
    Lindsay RM; Walker JF
    Trans Am Soc Artif Intern Organs; 1984; 30():711-4. PubMed ID: 6533968
    [No Abstract]   [Full Text] [Related]  

  • 27. [The influence of multiple use of cuprophan dialysers on hemodynamic changes in children with chronic kidney failure].
    Szczepańska M; Białota-Szurkowska A; Grzeszczak W; Szprynger K
    Przegl Lek; 1995; 52(11):552-7. PubMed ID: 8834633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haemodialysis-membrane-induced phagocyte oxidative metabolism activation and interleukin-1 production.
    Descamps-Latscha B; Herbelin A; Nguyen AT; Uzan M; Zingraff J
    Life Support Syst; 1986; 4(4):349-53. PubMed ID: 3494170
    [No Abstract]   [Full Text] [Related]  

  • 29. Clinical effects of a polyethylene glycol grafted cellulose membrane on thrombogenicity and biocompatibility during hemodialysis.
    Akizawa T; Kino K; Kinugasa E; Koshikawa S; Ikada Y; Kishida A; Hatanaka Y; Imamura K
    ASAIO Trans; 1990; 36(3):M640-2. PubMed ID: 2252772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A tribute to Dr. Werner Bandel: his contributions to the development of Cuprophan membranes. From packaging films to hemodialysis and hemofiltration.
    Artif Organs; 1979 Nov; 3(4):329-31. PubMed ID: 394726
    [No Abstract]   [Full Text] [Related]  

  • 31. Improvement of dialyzer compatibility by reduction of membrane surface area.
    Schaefer RM; Rautenberg W; Neumann S; Heidland A; Hörl WH
    Clin Nephrol; 1986; 26 Suppl 1():S35-8. PubMed ID: 3644705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane diffusion of the lungs in patients with chronic renal failure.
    Moinard J; Guenard H
    Eur Respir J; 1993 Feb; 6(2):225-30. PubMed ID: 8444294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complement activation during hemodialysis. Comparison of polysulfone and cuprophan membranes.
    Stannat S; Bahlmann J; Kiessling D; Koch KM; Deicher H; Peter HH
    Contrib Nephrol; 1985; 46():102-8. PubMed ID: 3874042
    [No Abstract]   [Full Text] [Related]  

  • 34. [Effect of re-utilization of cuprophan capillary dialysers with different liquids on their biocompatibility and effectiveness of elimination].
    Orłowski A; Szepietowski T
    Polim Med; 1992; 22(1-2):59-72. PubMed ID: 1461837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Clinical use of a new hydrate cellulose membrane for hemodialysis].
    Baeva LB; Levitskiĭ ER; Poddubnaia LP; Makhortov NS; Zaĭtsev VG
    Ter Arkh; 1983; 55(6):98-100. PubMed ID: 6612628
    [No Abstract]   [Full Text] [Related]  

  • 36. Granulocyte activation during hemodialysis.
    Hörl WH; Riegel W; Steinhauer HB; Wanner C; Thaiss F; Bozkurt F; Haag M; Schollmeyer P
    Clin Nephrol; 1986; 26 Suppl 1():S30-4. PubMed ID: 3829465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of protein adsorption on haemodialysis-induced complement activation and neutrophil defects.
    Neveceral P; Markert M; Wauters JP
    Nephrol Dial Transplant; 1995; 10(3):372-6. PubMed ID: 7792033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta 2-microglobulin kinetics during haemodialysis and haemofiltration.
    Flöge J; Granolleras C; Bingel M; Deschodt G; Branger B; Oules R; Koch KM; Shaldon S
    Nephrol Dial Transplant; 1987; 1(4):223-8. PubMed ID: 3110678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ["Membrane attack complex" formation in hemodialysis treatment].
    Hauser AC; Derfler K; Stockenhuber F; Janata O; Balcke P
    Wien Klin Wochenschr; 1990 Mar; 102(5):140-2. PubMed ID: 2321381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haemodialysis-induced leucopenia and activation of complement: effects of different membranes.
    Aljama P; Bird PA; Ward MK; Feest TG; Walker W; Tanboga H; Sussman M; Kerr DN
    Proc Eur Dial Transplant Assoc; 1978; 15():144-53. PubMed ID: 740661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.