These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34908891)

  • 41. Examining the regulatory value of multi-route mammalian acute systemic toxicity studies.
    Seidle T; Prieto P; Bulgheroni A
    ALTEX; 2011; 28(2):95-102. PubMed ID: 21625826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish.
    Yang C; Lim W; Song G
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Aug; 234():108758. PubMed ID: 32289527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of an acute oral gavage method for assessment of pesticide toxicity in terrestrial amphibians.
    Fort DJ; Mathis MB; Kee F; Whatling P; Clerkin D; Staveley J; Habig C
    Environ Toxicol Chem; 2018 Feb; 37(2):436-450. PubMed ID: 28865127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study.
    Dawson AH; Eddleston M; Senarathna L; Mohamed F; Gawarammana I; Bowe SJ; Manuweera G; Buckley NA
    PLoS Med; 2010 Oct; 7(10):e1000357. PubMed ID: 21048990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.
    Glaberman S; Padilla S; Barron MG
    Environ Toxicol Chem; 2017 May; 36(5):1221-1226. PubMed ID: 27699829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative ecotoxicity analysis for pesticide mixtures using benchmark dose methodology.
    Yang G; Li J; Wang Y; Chen C; Zhao H; Shao K
    Ecotoxicol Environ Saf; 2018 Sep; 159():94-101. PubMed ID: 29730414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of study species selection on estimates of pesticide exposure in free-ranging birds.
    Borges SL; Vyas NB; Christman MC
    Environ Manage; 2014 Feb; 53(2):416-28. PubMed ID: 24174132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bird exposure to fungicides through the consumption of treated seeds: A study of wild red-legged partridges in central Spain.
    Fernández-Vizcaíno E; Ortiz-Santaliestra ME; Fernández-Tizón M; Mateo R; Camarero PR; Mougeot F
    Environ Pollut; 2022 Jan; 292(Pt A):118335. PubMed ID: 34637835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species sensitivity to pesticides.
    Raimondo S; Barron MG
    SAR QSAR Environ Res; 2020 Jan; 31(1):1-18. PubMed ID: 31724447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Joint toxicity assessment reveals synergistic effect of chlorpyrifos and dichlorvos to common carp (Cyprinus carpio).
    Kunwar PS; Basaula R; Sinha AK; De Boeck G; Sapkota K
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Aug; 246():108975. PubMed ID: 33460822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams.
    Nowell LH; Moran PW; Schmidt TS; Norman JE; Nakagaki N; Shoda ME; Mahler BJ; Van Metre PC; Stone WW; Sandstrom MW; Hladik ML
    Sci Total Environ; 2018 Feb; 613-614():1469-1488. PubMed ID: 28802893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants.
    Li Z
    J Environ Manage; 2020 Dec; 276():111334. PubMed ID: 32980611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Levels and distribution pattern of organochlorine pesticide residues in eggs of 22 terrestrial birds from Tamil Nadu, India.
    Venugopal D; Subramanian M; Rajamani J; Palaniyappan J; Samidurai J; Arumugam A
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):39253-39264. PubMed ID: 32642894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative acute oral toxicity of pesticides to six species of birds.
    Tucker RK; Haegele MA
    Toxicol Appl Pharmacol; 1971 Sep; 20(1):57-65. PubMed ID: 5110827
    [No Abstract]   [Full Text] [Related]  

  • 56. ED points and NOELs: how they are used by UK pesticide regulators.
    Campbell PJ; Hoy SP
    Ecotoxicology; 1996 Jun; 5(3):139-44. PubMed ID: 24193720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing the Portion of Diet Taken by Birds and Mammals from a Pesticide-Treated Area-Proposal for a Joint Way Forward.
    Ludwigs JD; Ebeling M; Haaf S; Kragten S
    Environ Toxicol Chem; 2022 May; 41(5):1344-1354. PubMed ID: 35188295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil.
    Li Z
    Environ Pollut; 2020 Jan; 256():113372. PubMed ID: 31672361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Abuse of pesticides: effects on farm animals and birds].
    Baars AJ
    Tijdschr Diergeneeskd; 1990 Aug; 115(15-16):720-6. PubMed ID: 2396244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Noninvasively Collected Fecal Samples as Indicators of Multiple Pesticide Exposure in Wild Birds.
    Esther A; Schenke D; Heim W
    Environ Toxicol Chem; 2022 Jan; 41(1):201-207. PubMed ID: 34818436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.