BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34910578)

  • 1. Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans.
    Große C; Kohl TA; Niemann S; Herzberg M; Nies DH
    Appl Environ Microbiol; 2022 Feb; 88(4):e0204821. PubMed ID: 34910578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans.
    Große C; Grau J; Große I; Nies DH
    Microbiol Spectr; 2022 Apr; 10(2):e0012122. PubMed ID: 35311568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of nickel-iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands.
    Herzberg M; Schüttau M; Reimers M; Große C; Hans-Günther-Schlegel ; Nies DH
    Metallomics; 2015 Apr; 7(4):632-49. PubMed ID: 25720835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans.
    Van Houdt R; Monsieurs P; Mijnendonckx K; Provoost A; Janssen A; Mergeay M; Leys N
    BMC Genomics; 2012 Mar; 13():111. PubMed ID: 22443515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.
    Janssen PJ; Van Houdt R; Moors H; Monsieurs P; Morin N; Michaux A; Benotmane MA; Leys N; Vallaeys T; Lapidus A; Monchy S; Médigue C; Taghavi S; McCorkle S; Dunn J; van der Lelie D; Mergeay M
    PLoS One; 2010 May; 5(5):e10433. PubMed ID: 20463976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.
    Herzberg M; Bauer L; Nies DH
    Metallomics; 2014 Mar; 6(3):421-36. PubMed ID: 24407051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
    von Rozycki T; Nies DH
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant
    Mazhar SH; Herzberg M; Ben Fekih I; Zhang C; Bello SK; Li YP; Su J; Xu J; Feng R; Zhou S; Rensing C
    Front Microbiol; 2020; 11():47. PubMed ID: 32117100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes.
    Große C; Scherer J; Schleuder G; Nies DH
    J Bacteriol; 2023 Apr; 205(4):e0034322. PubMed ID: 36892288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria.
    Van Houdt R; Monchy S; Leys N; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):205-26. PubMed ID: 19390985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion sequence elements in Cupriavidus metallidurans CH34: distribution and role in adaptation.
    Mijnendonckx K; Provoost A; Monsieurs P; Leys N; Mergeay M; Mahillon J; Van Houdt R
    Plasmid; 2011 May; 65(3):193-203. PubMed ID: 21185859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34.
    Grosse C; Friedrich S; Nies DH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between the Zur Regulon Components and Metal Resistance in Cupriavidus metallidurans.
    Bütof L; Große C; Lilie H; Herzberg M; Nies DH
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31109989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans.
    Herzberg M; Bauer L; Kirsten A; Nies DH
    Metallomics; 2016 Mar; 8(3):313-26. PubMed ID: 26979555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium
    Turco F; Garavaglia M; Van Houdt R; Hill P; Rawson FJ; Kovacs K
    ACS Synth Biol; 2022 Nov; 11(11):3617-3628. PubMed ID: 36278822
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals.
    Monchy S; Benotmane MA; Janssen P; Vallaeys T; Taghavi S; van der Lelie D; Mergeay M
    J Bacteriol; 2007 Oct; 189(20):7417-25. PubMed ID: 17675385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The third pillar of metal homeostasis in Cupriavidus metallidurans CH34: preferences are controlled by extracytoplasmic function sigma factors.
    Große C; Poehlein A; Blank K; Schwarzenberger C; Schleuder G; Herzberg M; Nies DH
    Metallomics; 2019 Feb; 11(2):291-316. PubMed ID: 30681120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation.
    Rojas LA; Yáñez C; González M; Lobos S; Smalla K; Seeger M
    PLoS One; 2011 Mar; 6(3):e17555. PubMed ID: 21423734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34.
    Wiesemann N; Mohr J; Grosse C; Herzberg M; Hause G; Reith F; Nies DH
    J Bacteriol; 2013 May; 195(10):2298-308. PubMed ID: 23475973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes.
    Chakraborti P; Banerjee R; Roy A; Mandal S; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(11):2330-46. PubMed ID: 26156561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.