These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34910617)
1. Investigation of the polyamine biosynthetic and transport capability of Khazaal S; Al Safadi R; Osman D; Hiron A; Gilot P Microbiology (Reading); 2021 Dec; 167(12):. PubMed ID: 34910617 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Liu W; Tan M; Zhang C; Xu Z; Li L; Zhou R Microbiol Res; 2018 Mar; 207():177-187. PubMed ID: 29458852 [TBL] [Abstract][Full Text] [Related]
3. Khazaal S; Al Safadi R; Osman D; Hiron A; Gilot P Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35920804 [TBL] [Abstract][Full Text] [Related]
4. Effect of Spermidine on Biofilm Formation in Escherichia coli K-12. Thongbhubate K; Nakafuji Y; Matsuoka R; Kakegawa S; Suzuki H J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33685971 [TBL] [Abstract][Full Text] [Related]
5. Borrelia burgdorferi genes, bb0639-0642, encode a putative putrescine/spermidine transport system, PotABCD, that is spermidine specific and essential for cell survival. Bontemps-Gallo S; Lawrence KA; Richards CL; Gherardini FC Mol Microbiol; 2018 May; 108(4):350-360. PubMed ID: 29476656 [TBL] [Abstract][Full Text] [Related]
6. Functional characterization of the potRABCD operon for spermine and spermidine uptake and regulation in Staphylococcus aureus. Yao X; Lu CD Curr Microbiol; 2014 Jul; 69(1):75-81. PubMed ID: 24610336 [TBL] [Abstract][Full Text] [Related]
7. Polyamine biosynthesis and transport mechanisms are crucial for fitness and pathogenesis of Streptococcus pneumoniae. Shah P; Nanduri B; Swiatlo E; Ma Y; Pendarvis K Microbiology (Reading); 2011 Feb; 157(Pt 2):504-515. PubMed ID: 20966092 [TBL] [Abstract][Full Text] [Related]
8. Role of the polyamine transporter PotABCD during biofilm formation by Streptococcus pneumoniae. Vieira B; Alcantara JB; Destro G; Guerra MES; Oliveira S; Lima CA; Longato GB; Hakansson AP; Leite LC; Darrieux M; R Converso T PLoS One; 2024; 19(8):e0307573. PubMed ID: 39110759 [TBL] [Abstract][Full Text] [Related]
9. The effect of acylated polyamine derivatives on polyamine uptake mechanism, cell growth, and polyamine pools in Escherichia coli, and the pursuit of structure/activity relationships. Karahalios P; Mamos P; Vynios DH; Papaioannou D; Kalpaxis DL Eur J Biochem; 1998 Feb; 251(3):998-1004. PubMed ID: 9490078 [TBL] [Abstract][Full Text] [Related]
10. Polyamine transport in bacteria and yeast. Igarashi K; Kashiwagi K Biochem J; 1999 Dec; 344 Pt 3(Pt 3):633-42. PubMed ID: 10585849 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a COS cell line deficient in polyamine transport. Hyvönen T; Seiler N; Persson L Biochim Biophys Acta; 1994 Apr; 1221(3):279-85. PubMed ID: 8167149 [TBL] [Abstract][Full Text] [Related]
12. Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Geddes RD; Wang X; Yomano LP; Miller EN; Zheng H; Shanmugam KT; Ingram LO Appl Environ Microbiol; 2014 Oct; 80(19):5955-64. PubMed ID: 25063650 [TBL] [Abstract][Full Text] [Related]
13. Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Sala-Rabanal M; Li DC; Dake GR; Kurata HT; Inyushin M; Skatchkov SN; Nichols CG Mol Pharm; 2013 Apr; 10(4):1450-8. PubMed ID: 23458604 [TBL] [Abstract][Full Text] [Related]
14. Polyamine uptake systems in Escherichia coli. Igarashi K; Ito K; Kashiwagi K Res Microbiol; 2001; 152(3-4):271-8. PubMed ID: 11421274 [TBL] [Abstract][Full Text] [Related]
15. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. Hamouda NN; Van den Haute C; Vanhoutte R; Sannerud R; Azfar M; Mayer R; Cortés Calabuig Á; Swinnen JV; Agostinis P; Baekelandt V; Annaert W; Impens F; Verhelst SHL; Eggermont J; Martin S; Vangheluwe P J Biol Chem; 2021; 296():100182. PubMed ID: 33310703 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome. Nakamya MF; Ayoola MB; Shack LA; Swiatlo E; Nanduri B Pathogens; 2021 Oct; 10(10):. PubMed ID: 34684271 [TBL] [Abstract][Full Text] [Related]
17. Transport and metabolism of polyamines in wild and multidrug resistant human leukemia (K 562) cells. Khan NA; Fardel O; Havouis R; Fauchet R; Moulinoux JP Leuk Res; 1994 Apr; 18(4):283-91. PubMed ID: 7909574 [TBL] [Abstract][Full Text] [Related]
18. Effects of the S-adenosylmethionine decarboxylase inhibitor, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, on cell growth and polyamine metabolism and transport in Chinese hamster ovary cell cultures. Byers TL; Wechter RS; Hu RH; Pegg AE Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):89-96. PubMed ID: 7945270 [TBL] [Abstract][Full Text] [Related]
19. Dual and divergent transcriptional impact of IS1548 insertion upstream of the peptidoglycan biosynthesis gene murB of Streptococcus agalactiae. Khazaal S; Al Safadi R; Osman D; Hiron A; Gilot P Gene; 2019 Dec; 720():144094. PubMed ID: 31476407 [TBL] [Abstract][Full Text] [Related]
20. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Takahashi T; Kakehi J Ann Bot; 2010 Jan; 105(1):1-6. PubMed ID: 19828463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]