BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34910835)

  • 1. Rearrangements in Scholl Reaction.
    Ponugoti N; Parthasarathy V
    Chemistry; 2022 Mar; 28(17):e202103530. PubMed ID: 34910835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unexpected Scholl Reaction of 6,7,13,14-Tetraarylbenzo[k]tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons.
    Liu J; Narita A; Osella S; Zhang W; Schollmeyer D; Beljonne D; Feng X; Müllen K
    J Am Chem Soc; 2016 Mar; 138(8):2602-8. PubMed ID: 26859522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminescent Chiral Furanol-PAHs via Straightforward Ni-Catalysed C
    Sala J; Capdevila L; Berga C; de Aquino A; Rodríguez L; Simon S; Ribas X
    Chemistry; 2024 Jan; 30(5):e202303200. PubMed ID: 37903141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Contorted Polycyclic Aromatic Hydrocarbons by a One-Step Cyclopentannulation and Regioselective Triflyloxylation.
    Yang X; Hoffmann M; Rominger F; Kirschbaum T; Dreuw A; Mastalerz M
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10650-10654. PubMed ID: 31125478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal Rearrangement of Twisted Polycyclic Aromatic Hydrocarbons under Scholl Reaction Conditions.
    Nobusue S; Fujita K; Tobe Y
    Org Lett; 2017 Jun; 19(12):3227-3230. PubMed ID: 28585441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Serendipity to Precision: Decoding the Enigma of Rearrangement in Scholl-Type Reactions for Programmable Cyclization.
    Ponugoti N; Maddala S; Venkatakrishnan P
    J Org Chem; 2024 Mar; 89(6):4185-4190. PubMed ID: 38423994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review.
    Jassas RS; Mughal EU; Sadiq A; Alsantali RI; Al-Rooqi MM; Naeem N; Moussa Z; Ahmed SA
    RSC Adv; 2021 Sep; 11(51):32158-32202. PubMed ID: 35495486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Acid-Catalyzed Reactions of 10,11-Epoxy-Dibenzo[
    Hsu CY; Zheng CJ; Wu YY; Fan WH; Lin CH
    ACS Omega; 2022 Jun; 7(25):21505-21527. PubMed ID: 35785270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsymmetric Twofold Scholl Cyclization of a 5,11-Dinaphthyltetracene: Selective Formation of Pentagonal and Hexagonal Rings via Dicationic Intermediates.
    Chaolumen ; Murata M; Wakamiya A; Murata Y
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):5082-5086. PubMed ID: 28370944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Scholl Reaction as a Powerful Tool for Synthesis of Curved Polycyclic Aromatics.
    Zhang Y; Pun SH; Miao Q
    Chem Rev; 2022 Sep; 122(18):14554-14593. PubMed ID: 35960873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes.
    Izquierdo-García P; Fernández-García JM; Perles J; Fernández I; Martín N
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215655. PubMed ID: 36495528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs).
    Wang Y; Zhao R; Ackermann L
    Adv Mater; 2023 Dec; 35(49):e2300760. PubMed ID: 36965124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis of Nitrogen-Doped Nanographenes with Joined Nonhexagons via a Ring Expansion Strategy.
    Luo H; Liu J
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202302761. PubMed ID: 36942506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration.
    Wang J; Shen C; Zhang G; Gan F; Ding Y; Qiu H
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202115979. PubMed ID: 34854182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scholl Cyclizations of Aryl Naphthalenes: Rearrangement Precedes Cyclization.
    Skraba-Joiner SL; McLaughlin EC; Ajaz A; Thamatam R; Johnson RP
    J Org Chem; 2015 Oct; 80(19):9578-83. PubMed ID: 26340531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Access to Nanographenes and Fused Heteroaromatics by Palladium-Catalyzed Annulative π-Extension Reaction of Unfunctionalized Aromatics with Diiodobiaryls.
    Matsuoka W; Ito H; Itami K
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12224-12228. PubMed ID: 28800388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes.
    Grzybowski M; Sadowski B; Butenschön H; Gryko DT
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):2998-3027. PubMed ID: 31342599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azepine- or Oxepine-embedded Double Saddle-Helix Nanographenes.
    Li R; Ma B; He RY; Zhang B; Zhang YK; Feng SY; An P
    Chem Asian J; 2022 Jan; 17(2):e202101365. PubMed ID: 34904381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of precisely functionalizable curved nanographenes via graphitization-induced regioselective chlorination in a mechanochemical Scholl Reaction.
    Stanojkovic J; William R; Zhang Z; Fernández I; Zhou J; Webster RD; Stuparu MC
    Nat Commun; 2023 Feb; 14(1):803. PubMed ID: 36781875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Azulene-Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction.
    Han Y; Xue Z; Li G; Gu Y; Ni Y; Dong S; Chi C
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9026-9031. PubMed ID: 32096589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.