These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34910837)

  • 1. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks.
    Paikar A; Novichkov AI; Hanopolskyi AI; Smaliak VA; Sui X; Kampf N; Skorb EV; Semenov SN
    Adv Mater; 2022 Apr; 34(13):e2106816. PubMed ID: 34910837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations.
    Bi Y; Du X; He P; Wang C; Liu C; Guo W
    Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast, High-Strain, and Strong Uniaxial Hydrogel Actuators from Recyclable Nanofibril Networks.
    Benselfelt T; Rothemund P; Lee PS
    Adv Mater; 2023 Jun; 35(22):e2300487. PubMed ID: 37002908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization.
    Novichkov AI; Hanopolskyi AI; Miao X; Shimon LJW; Diskin-Posner Y; Semenov SN
    Nat Commun; 2021 May; 12(1):2994. PubMed ID: 34016981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.
    Semenov SN; Kraft LJ; Ainla A; Zhao M; Baghbanzadeh M; Campbell VE; Kang K; Fox JM; Whitesides GM
    Nature; 2016 Sep; 537(7622):656-60. PubMed ID: 27680939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel.
    Xu H; Bai S; Gu G; Gao Y; Sun X; Guo X; Xuan F; Wang Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43825-43832. PubMed ID: 36103624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of polymer-hydrogel capsules via thiol-disulfide exchange.
    Chong SF; Chandrawati R; Städler B; Park J; Cho J; Wang Y; Jia Z; Bulmus V; Davis TP; Zelikin AN; Caruso F
    Small; 2009 Nov; 5(22):2601-10. PubMed ID: 19771568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Living' controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels.
    Wu DC; Loh XJ; Wu YL; Lay CL; Liu Y
    J Am Chem Soc; 2010 Nov; 132(43):15140-3. PubMed ID: 20929223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces.
    Zhao Y; Cui J; Qiu X; Yan Y; Zhang Z; Fang K; Yang Y; Zhang X; Huang J
    Adv Colloid Interface Sci; 2022 Oct; 308():102749. PubMed ID: 36007285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosera-Inspired Dual-Actuating Double-Layer Hydrogel Actuator.
    Kong X; Li Y; Xu W; Liang H; Xue Z; Niu Y; Pang M; Ren C
    Macromol Rapid Commun; 2021 Nov; 42(21):e2100416. PubMed ID: 34418888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability.
    Rodon Fores J; Criado-Gonzalez M; Chaumont A; Carvalho A; Blanck C; Schmutz M; Boulmedais F; Schaaf P; Jierry L
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14558-14563. PubMed ID: 32463972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming Water Diffusion Limitations in Hydrogels via Microtubular Graphene Networks for Soft Actuators.
    Hauck M; Saure LM; Zeller-Plumhoff B; Kaps S; Hammel J; Mohr C; Rieck L; Nia AS; Feng X; Pugno NM; Adelung R; Schütt F
    Adv Mater; 2023 Oct; 35(41):e2302816. PubMed ID: 37369361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environment-Interactive Programmable Deformation of Electronically Innervated Synergistic Fluorescence-Color/Shape Changeable Hydrogel Actuators.
    Xie J; Wei S; Lu W; Wu S; Zhang Y; Wang R; Zhu N; Chen T
    Small; 2023 Nov; 19(47):e2304204. PubMed ID: 37496099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-driven hydrogel actuators with an origami structure.
    Huang Z; Wei C; Dong L; Wang A; Yao H; Guo Z; Mi S
    iScience; 2022 Jul; 25(7):104674. PubMed ID: 35856021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D Printable Tough and Thermoresponsive Hydrogels.
    Hua M; Wu D; Wu S; Ma Y; Alsaid Y; He X
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12689-12697. PubMed ID: 33263991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated Self-Folding in Multi-Layered Hydrogels Considered with an Interfacial Layer.
    Lim JW; Kim SJ; Jeong J; Shin SG; Woo C; Jung W; Jeong JH
    Gels; 2024 Jan; 10(1):. PubMed ID: 38247771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties.
    Casuso P; Odriozola I; Pérez-San Vicente A; Loinaz I; Cabañero G; Grande HJ; Dupin D
    Biomacromolecules; 2015 Nov; 16(11):3552-61. PubMed ID: 26418440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes.
    Ko J; Kim D; Song Y; Lee S; Kwon M; Han S; Kang D; Kim Y; Huh J; Koh JS; Cho J
    ACS Nano; 2020 Sep; 14(9):11906-11918. PubMed ID: 32885947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations.
    Zhang Y; Fan G; Jiang J; Liu Z; Liu Z; Li G
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29188-29196. PubMed ID: 35709501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.