These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 34910931)

  • 1. Aversive motivation and cognitive control.
    Yee DM; Leng X; Shenhav A; Braver TS
    Neurosci Biobehav Rev; 2022 Feb; 133():104493. PubMed ID: 34910931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential modulation of cognitive control networks by monetary reward and punishment.
    Cubillo A; Makwana AB; Hare TA
    Soc Cogn Affect Neurosci; 2019 Mar; 14(3):305-317. PubMed ID: 30690563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal Anterior Cingulate Cortex Encodes the Integrated Incentive Motivational Value of Cognitive Task Performance.
    Yee DM; Crawford JL; Lamichhane B; Braver TS
    J Neurosci; 2021 Apr; 41(16):3707-3720. PubMed ID: 33707296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The habenula encodes negative motivational value associated with primary punishment in humans.
    Lawson RP; Seymour B; Loh E; Lutti A; Dolan RJ; Dayan P; Weiskopf N; Roiser JP
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11858-63. PubMed ID: 25071182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability.
    Gentry RN; Schuweiler DR; Roesch MR
    Brain Res; 2019 Jun; 1713():80-90. PubMed ID: 30300635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does training method matter? Evidence for the negative impact of aversive-based methods on companion dog welfare.
    Vieira de Castro AC; Fuchs D; Morello GM; Pastur S; de Sousa L; Olsson IAS
    PLoS One; 2020; 15(12):e0225023. PubMed ID: 33326450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder.
    Liu WH; Valton V; Wang LZ; Zhu YH; Roiser JP
    Soc Cogn Affect Neurosci; 2017 Sep; 12(9):1520-1533. PubMed ID: 28575424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing Contributions of GABAergic and Glutamatergic Ventral Pallidal Neurons to Motivational Behaviors.
    Stephenson-Jones M; Bravo-Rivera C; Ahrens S; Furlan A; Xiao X; Fernandes-Henriques C; Li B
    Neuron; 2020 Mar; 105(5):921-933.e5. PubMed ID: 31948733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of negative motivational value in the primate lateral habenula.
    Matsumoto M; Hikosaka O
    Nat Neurosci; 2009 Jan; 12(1):77-84. PubMed ID: 19043410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement.
    Xiao X; Deng H; Furlan A; Yang T; Zhang X; Hwang GR; Tucciarone J; Wu P; He M; Palaniswamy R; Ramakrishnan C; Ritola K; Hantman A; Deisseroth K; Osten P; Huang ZJ; Li B
    Cell; 2020 Oct; 183(1):211-227.e20. PubMed ID: 32937106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.
    Ikemoto S; Panksepp J
    Brain Res Brain Res Rev; 1999 Dec; 31(1):6-41. PubMed ID: 10611493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?
    Peciña S; Schulkin J; Berridge KC
    BMC Biol; 2006 Apr; 4():8. PubMed ID: 16613600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cognitive neuroscience approach to individual differences in sensitivity to reward.
    Avila C; Parcet MA; Barrós-Loscertales A
    Neurotox Res; 2008 Oct; 14(2-3):191-203. PubMed ID: 19073426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parsing the contributions of negative affect vs. aversive motivation to cognitive control: an experimental investigation.
    Yang Q; Si S; Pourtois G
    Front Behav Neurosci; 2023; 17():1209824. PubMed ID: 37791110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding prediction signals during appetitive and aversive Pavlovian conditioning in the primate lateral hypothalamus.
    Noritake A; Nakamura K
    J Neurophysiol; 2019 Feb; 121(2):396-417. PubMed ID: 30485150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociable influences of reward and punishment on adaptive cognitive control.
    Leng X; Yee D; Ritz H; Shenhav A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009737. PubMed ID: 34962931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of the Angiotensin II Receptor Antagonist Losartan on Appetitive Versus Aversive Learning: A Randomized Controlled Trial.
    Pulcu E; Shkreli L; Holst CG; Woud ML; Craske MG; Browning M; Reinecke A
    Biol Psychiatry; 2019 Sep; 86(5):397-404. PubMed ID: 31155138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Appetitive and Aversive Motivational States on Wanting and Liking of Interpersonal Touch.
    Massaccesi C; Korb S; Skoluda N; Nater UM; Silani G
    Neuroscience; 2021 Jun; 464():12-25. PubMed ID: 32949673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.