These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34911496)
1. The opposing action of stromal cell proenkephalin and stem cell transcription factors in prostate cancer differentiation. Liu AY BMC Cancer; 2021 Dec; 21(1):1335. PubMed ID: 34911496 [TBL] [Abstract][Full Text] [Related]
2. Prostate cancer research: tools, cell types, and molecular targets. Liu AY Front Oncol; 2024; 14():1321694. PubMed ID: 38595814 [TBL] [Abstract][Full Text] [Related]
3. Lineage relationship between prostate adenocarcinoma and small cell carcinoma. Kanan AD; Corey E; Vêncio RZN; Ishwar A; Liu AY BMC Cancer; 2019 May; 19(1):518. PubMed ID: 31146720 [TBL] [Abstract][Full Text] [Related]
4. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming. Borges GT; Vêncio EF; Quek SI; Chen A; Salvanha DM; Vêncio RZ; Nguyen HM; Vessella RL; Cavanaugh C; Ware CB; Troisch P; Liu AY J Cell Physiol; 2016 Sep; 231(9):2040-7. PubMed ID: 26773436 [TBL] [Abstract][Full Text] [Related]
5. Reprogramming of prostate cancer-associated stromal cells to embryonic stem-like. Vêncio EF; Nelson AM; Cavanaugh C; Ware CB; Milller DG; Garcia JC; Vêncio RZ; Loprieno MA; Liu AY Prostate; 2012 Sep; 72(13):1453-63. PubMed ID: 22314551 [TBL] [Abstract][Full Text] [Related]
6. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. Bae KM; Su Z; Frye C; McClellan S; Allan RW; Andrejewski JT; Kelley V; Jorgensen M; Steindler DA; Vieweg J; Siemann DW J Urol; 2010 May; 183(5):2045-53. PubMed ID: 20303530 [TBL] [Abstract][Full Text] [Related]
7. Stromal mesenchyme cell genes of the human prostate and bladder. Goo YA; Goodlett DR; Pascal LE; Worthington KD; Vessella RL; True LD; Liu AY BMC Urol; 2005 Dec; 5():17. PubMed ID: 16343351 [TBL] [Abstract][Full Text] [Related]
8. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Corominas-Faja B; Cufí S; Oliveras-Ferraros C; Cuyàs E; López-Bonet E; Lupu R; Alarcón T; Vellon L; Iglesias JM; Leis O; Martín ÁG; Vazquez-Martin A; Menendez JA Cell Cycle; 2013 Sep; 12(18):3109-24. PubMed ID: 23974095 [TBL] [Abstract][Full Text] [Related]
9. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma. Li R; Huang J; Ma M; Lou Y; Zhang Y; Wu L; Chang DW; Zhao P; Dong Q; Wu X; Han B Oncotarget; 2016 Oct; 7(42):68360-68370. PubMed ID: 27588392 [TBL] [Abstract][Full Text] [Related]
10. Cancer-secreted AGR2 induces programmed cell death in normal cells. Vitello EA; Quek SI; Kincaid H; Fuchs T; Crichton DJ; Troisch P; Liu AY Oncotarget; 2016 Aug; 7(31):49425-49434. PubMed ID: 27283903 [TBL] [Abstract][Full Text] [Related]
11. Reprogramming Prostate Cancer Cells into Induced Pluripotent Stem Cells: a Promising Model of Prostate Cancer Stem Cell Research. Zhang Y; Chen B; Xu P; Liu C; Huang P Cell Reprogram; 2020 Oct; 22(5):262-268. PubMed ID: 32816532 [TBL] [Abstract][Full Text] [Related]
12. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Zhang X; Cruz FD; Terry M; Remotti F; Matushansky I Oncogene; 2013 May; 32(18):2249-60, 2260.e1-21. PubMed ID: 22777357 [TBL] [Abstract][Full Text] [Related]
13. Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, Kainulainen K; Niskanen EA; Kinnunen J; Mäki-Mantila K; Hartikainen K; Paakinaho V; Malinen M; Ketola K; Pasonen-Seppänen S Oncoimmunology; 2024; 13(1):2393442. PubMed ID: 39175947 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of Rex1 (zfp42) in normal prostate epithelial cells and prostate cancer cells. Lee MY; Lu A; Gudas LJ J Cell Physiol; 2010 Jul; 224(1):17-27. PubMed ID: 20232320 [TBL] [Abstract][Full Text] [Related]
15. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. Kong D; Banerjee S; Ahmad A; Li Y; Wang Z; Sethi S; Sarkar FH PLoS One; 2010 Aug; 5(8):e12445. PubMed ID: 20805998 [TBL] [Abstract][Full Text] [Related]
16. Partial inhibition of differentiation associated with elevated protein levels of pluripotency factors in mouse embryonic stem cells expressing exogenous EGAM1N homeoprotein. Sato S; Nakazawa M; Kihara Y; Kubo Y; Sato Y; Kikuchi T; Nonaka A; Sasaki A; Iwashita J; Murata J; Hosaka M; Kobayashi M J Biosci Bioeng; 2015 Nov; 120(5):562-9. PubMed ID: 25817697 [TBL] [Abstract][Full Text] [Related]
17. Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor. Beltran AS; Rivenbark AG; Richardson BT; Yuan X; Quian H; Hunt JP; Zimmerman E; Graves LM; Blancafort P Breast Cancer Res; 2011 Sep; 13(5):R94. PubMed ID: 21952072 [TBL] [Abstract][Full Text] [Related]
18. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. Greber B; Lehrach H; Adjaye J BMC Dev Biol; 2007 May; 7():46. PubMed ID: 17506876 [TBL] [Abstract][Full Text] [Related]
19. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. Bourguignon LY; Wong G; Earle C; Chen L J Biol Chem; 2012 Sep; 287(39):32800-24. PubMed ID: 22847005 [TBL] [Abstract][Full Text] [Related]
20. Tip110 Deletion Impaired Embryonic and Stem Cell Development Involving Downregulation of Stem Cell Factors Nanog, Oct4, and Sox2. Whitmill A; Liu Y; Timani KA; Niu Y; He JJ Stem Cells; 2017 Jul; 35(7):1674-1686. PubMed ID: 28436127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]