These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34911759)

  • 1. Cell wall composition determines handedness reversal in helicoidal cellulose architectures of
    Chang Y; Middleton R; Ogawa Y; Gregory T; Steiner LM; Kovalev A; Karanja RHN; Rudall PJ; Glover BJ; Gorb SN; Vignolini S
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using structural colour to track length scale of cell-wall layers in developing Pollia japonica fruits.
    Middleton R; Moyroud E; Rudall PJ; Prychid CJ; Conejero M; Glover BJ; Vignolini S
    New Phytol; 2021 Jun; 230(6):2327-2336. PubMed ID: 33720398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pointillist structural color in Pollia fruit.
    Vignolini S; Rudall PJ; Rowland AV; Reed A; Moyroud E; Faden RB; Baumberg JJ; Glover BJ; Steiner U
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15712-5. PubMed ID: 23019355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics.
    Kha H; Tuble SC; Kalyanasundaram S; Williamson RE
    Plant Physiol; 2010 Feb; 152(2):774-86. PubMed ID: 20007450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls.
    Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH
    Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.
    Wang T; Hong M
    J Exp Bot; 2016 Jan; 67(2):503-14. PubMed ID: 26355148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helicoidal orientation of cellulose microfibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth.
    Neville AC; Levy S
    Planta; 1984 Oct; 162(4):370-84. PubMed ID: 24253172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.
    Gorshkova T; Mokshina N; Chernova T; Ibragimova N; Salnikov V; Mikshina P; Tryfona T; Banasiak A; Immerzeel P; Dupree P; Mellerowicz EJ
    Plant Physiol; 2015 Nov; 169(3):2048-63. PubMed ID: 26378099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension.
    Revol JF; Bradford H; Giasson J; Marchessault RH; Gray DG
    Int J Biol Macromol; 1992 Jun; 14(3):170-2. PubMed ID: 1390450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa.
    Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM
    J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers.
    Ogawa Y
    Carbohydr Polym; 2021 Jan; 251():117102. PubMed ID: 33142640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model.
    Yi H; Puri VM
    Plant Physiol; 2012 Nov; 160(3):1281-92. PubMed ID: 22926320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant and algal structure: from cell walls to biomechanical function.
    Shtein I; Bar-On B; Popper ZA
    Physiol Plant; 2018 Sep; 164(1):56-66. PubMed ID: 29572853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.