These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34911828)

  • 1. Proceedings of the 2019 Viral Clearance Symposium, Session 2: New Modalities in Chromatography and Adsorptive Filters.
    Specht R; Schwantes A
    PDA J Pharm Sci Technol; 2022; 76(4):306-314. PubMed ID: 34911828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the combination of single-pass tangential flow filtration and anion exchange chromatography for intensified mAb polishing.
    Elich T; Goodrich E; Lutz H; Mehta U
    Biotechnol Prog; 2019 Sep; 35(5):e2862. PubMed ID: 31168950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the 2017 Viral Clearance Symposium, Session 2.2: DSP Unit Operations-Purification Unit Operations.
    Roush D; Kreil TR
    PDA J Pharm Sci Technol; 2018; 72(5):479-487. PubMed ID: 30030354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the 2019 Viral Clearance Symposium, Session 1: Viral Clearance Strategies and Case Studies.
    Reitz S; Schwantes A
    PDA J Pharm Sci Technol; 2022; 76(4):297-305. PubMed ID: 34911829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective Evaluation of Cycled Resin in Viral Clearance Studies-A Multiple Company Collaboration.
    Mattila J; Curtis S; Webb-Vargas Y; Wilson E; Galperina O; Roush D; Tobler S; Stanley B; Clark M; Weaver J; Pike J; Yu D; Li X; Flicker A; Kindermann J; Schuelke N; Whitcombe R; Bennett L
    PDA J Pharm Sci Technol; 2019; 73(5):470-486. PubMed ID: 31101706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.
    Iskra T; Sacramo A; Gallo C; Godavarti R; Chen S; Lute S; Brorson K
    Biotechnol Prog; 2015; 31(3):750-7. PubMed ID: 25826186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation exchange chromatography performed in overloaded mode is effective in removing viruses during the manufacturing of monoclonal antibodies.
    Masuda Y; Tsuda M; Hashikawa-Muto C; Takahashi Y; Nonaka K; Wakamatsu K
    Biotechnol Prog; 2019 Sep; 35(5):e2858. PubMed ID: 31148380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral clearance capability of monoclonal antibody purification.
    Cai K; Anderson J; Utiger E; Ferreira G
    Biologicals; 2024 Feb; 85():101751. PubMed ID: 38387156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of adsorptive hybrid filters to enable two-step purification of biologics.
    Singh N; Arunkumar A; Peck M; Voloshin AM; Moreno AM; Tan Z; Hester J; Borys MC; Li ZJ
    MAbs; 2017; 9(2):350-363. PubMed ID: 27929735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of virus-antibody interactions on viral clearance in anion exchange chromatography.
    Hung J; Lam SF; Tan Z; Choy D; Chennamsetty N; Lewandowski A; Qi W; Lynch M; Ghose S; Li ZJ
    J Chromatogr A; 2020 Dec; 1633():461635. PubMed ID: 33128974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral removal by column chromatography in downstream processing of monoclonal antibodies.
    Li Y
    Protein Expr Purif; 2022 Oct; 198():106131. PubMed ID: 35700957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus removal robustness of ion exchange chromatography.
    Cai K; Anderson J; Orchard JD; Afdahl CD; Dickson M; Li Y
    Biologicals; 2019 Mar; 58():28-34. PubMed ID: 30661901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated flow-through purification for therapeutic monoclonal antibodies processing.
    Ichihara T; Ito T; Kurisu Y; Galipeau K; Gillespie C
    MAbs; 2018; 10(2):325-334. PubMed ID: 29271693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography.
    Zhang L; Parasnavis S; Li Z; Chen J; Cramer S
    J Chromatogr A; 2019 Sep; 1602():317-325. PubMed ID: 31248584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapting virus filtration to enable intensified and continuous monoclonal antibody processing.
    Bohonak DM; Mehta U; Weiss ER; Voyta G
    Biotechnol Prog; 2021 Mar; 37(2):e3088. PubMed ID: 33016523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.
    Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C
    Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prevention of an anomalous chromatographic behavior and the resulting successful removal of viruses from monoclonal antibody with an asymmetric charge distribution by using a membrane adsorber in highly efficient, anion-exchange chromatography in flow-through mode.
    Masuda Y; Ogino Y; Yamaichi K; Takahashi Y; Nonaka K; Wakamatsu K
    Biotechnol Prog; 2020 May; 36(3):e2955. PubMed ID: 31894893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies.
    Gefroh E; Dehghani H; McClure M; Connell-Crowley L; Vedantham G
    PDA J Pharm Sci Technol; 2014; 68(3):297-311. PubMed ID: 25188350
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.