These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34911929)

  • 21. Mechanism underlying liquid-to-solid phase transition in fused in sarcoma liquid droplets.
    Li S; Yoshizawa T; Shiramasa Y; Kanamaru M; Ide F; Kitamura K; Kashiwagi N; Sasahara N; Kitazawa S; Kitahara R
    Phys Chem Chem Phys; 2022 Aug; 24(32):19346-19353. PubMed ID: 35943083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kinetics of islet amyloid polypeptide phase-separated system and hydrogel formation are critically influenced by macromolecular crowding.
    Pytowski L; Vaux DJ; Jean L
    Biochem J; 2021 Aug; 478(15):3025-3046. PubMed ID: 34313292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Observation of "Elongated" Conformational States in α-Synuclein upon Liquid-Liquid Phase Separation.
    Ubbiali D; Fratini M; Piersimoni L; Ihling CH; Kipping M; Heilmann I; Iacobucci C; Sinz A
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202205726. PubMed ID: 36115020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein misfolding and amyloid nucleation through liquid-liquid phase separation.
    Mukherjee S; Poudyal M; Dave K; Kadu P; Maji SK
    Chem Soc Rev; 2024 May; 53(10):4976-5013. PubMed ID: 38597222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Optimization of Inhibitors of α-Synuclein Fibril Growth: Affinity to the Fibril End as a Crucial Factor.
    Afitska K; Priss A; Yushchenko DA; Shvadchak VV
    J Mol Biol; 2020 Feb; 432(4):967-977. PubMed ID: 31809698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid-liquid phase separation: a pressure-jump relaxation study.
    Cinar H; Winter R
    Sci Rep; 2020 Oct; 10(1):17245. PubMed ID: 33057154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. α-Synuclein phase separation and amyloid aggregation are modulated by C-terminal truncations.
    Huang S; Mo X; Wang J; Ye X; Yu H; Liu Y
    FEBS Lett; 2022 Jun; 596(11):1388-1400. PubMed ID: 35485974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet and fibril formation of the functional amyloid Orb2.
    Ashami K; Falk AS; Hurd C; Garg S; Cervantes SA; Rawat A; Siemer AB
    J Biol Chem; 2021 Jul; 297(1):100804. PubMed ID: 34044018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TDP-43 Amyloid Fibril Formation via Phase Separation-Related and -Unrelated Pathways.
    Lin PH; Wu GW; Lin YH; Huang JR; Jeng US; Liu WM; Huang JR
    ACS Chem Neurosci; 2024 Oct; 15(20):3767-75. PubMed ID: 39358890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Watching liquid droplets of TDP-43
    Shuster SO; Lee JC
    J Biol Chem; 2022 Feb; 298(2):101528. PubMed ID: 34953857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid Dynamics and Phase Transition within α-Synuclein Amyloid Fibrils.
    Galvagnion C; Topgaard D; Makasewicz K; Buell AK; Linse S; Sparr E; Dobson CM
    J Phys Chem Lett; 2019 Dec; 10(24):7872-7877. PubMed ID: 31790267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A sequence-based model for identifying proteins undergoing liquid-liquid phase separation/forming fibril aggregates via machine learning.
    Liao S; Zhang Y; Han X; Wang T; Wang X; Yan Q; Li Q; Qi Y; Zhang Z
    Protein Sci; 2024 Mar; 33(3):e4927. PubMed ID: 38380794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymorph-specific distribution of binding sites determines thioflavin-T fluorescence intensity in α-synuclein fibrils.
    Sidhu A; Vaneyck J; Blum C; Segers-Nolten I; Subramaniam V
    Amyloid; 2018 Sep; 25(3):189-196. PubMed ID: 30486688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid-liquid phase separation of α-synuclein is highly sensitive to sequence complexity.
    Mahapatra A; Newberry RW
    bioRxiv; 2023 Nov; ():. PubMed ID: 37577712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation kinetics and physicochemical properties of mesoscopic Alpha-Synuclein assemblies modulated by sodium chloride and a distinct pulsed electric field.
    Wang M; Thuenauer R; Schubert R; Gevorgyan S; Lorenzen K; Brognaro H; Betzel C
    Soft Matter; 2023 Feb; 19(7):1363-1372. PubMed ID: 36723049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence-Based Prediction of Protein Phase Separation: The Role of Beta-Pairing Propensity.
    Mullick P; Trovato A
    Biomolecules; 2022 Nov; 12(12):. PubMed ID: 36551199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases.
    Ahmad A; Uversky VN; Khan RH
    Int J Biol Macromol; 2022 Nov; 220():703-720. PubMed ID: 35998851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay between tau and α-synuclein liquid-liquid phase separation.
    Siegert A; Rankovic M; Favretto F; Ukmar-Godec T; Strohäker T; Becker S; Zweckstetter M
    Protein Sci; 2021 Jul; 30(7):1326-1336. PubMed ID: 33452693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid-liquid phase separation as triggering factor of fibril formation.
    Khorsand FR; Uversky VN
    Prog Mol Biol Transl Sci; 2024; 206():143-182. PubMed ID: 38811080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.