BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34911933)

  • 21. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence.
    Sunkel B; Wu D; Chen Z; Wang CM; Liu X; Ye Z; Horning AM; Liu J; Mahalingam D; Lopez-Nicora H; Lin CL; Goodfellow PJ; Clinton SK; Jin VX; Chen CL; Huang TH; Wang Q
    Nucleic Acids Res; 2016 May; 44(9):4105-22. PubMed ID: 26743006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway.
    Imamura Y; Sakamoto S; Endo T; Utsumi T; Fuse M; Suyama T; Kawamura K; Imamoto T; Yano K; Uzawa K; Nihei N; Suzuki H; Mizokami A; Ueda T; Seki N; Tanzawa H; Ichikawa T
    PLoS One; 2012; 7(8):e42456. PubMed ID: 22879989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells.
    Albayrak G; Konac E; Ugras Dikmen A; Bilen CY
    Exp Biol Med (Maywood); 2018 Aug; 243(12):990-994. PubMed ID: 30043639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer.
    Hernández-Llodrà S; Segalés L; Safont A; Juanpere N; Lorenzo M; Fumadó L; Rodríguez-Vida A; Cecchini L; Bellmunt J; Lloreta-Trull J
    Prostate; 2019 Jul; 79(10):1156-1165. PubMed ID: 31090082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression.
    Gong Y; Wang L; Chippada-Venkata U; Dai X; Oh WK; Zhu J
    Oncotarget; 2016 Oct; 7(42):68688-68707. PubMed ID: 27626693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.
    Krause WC; Shafi AA; Nakka M; Weigel NL
    Int J Biochem Cell Biol; 2014 Sep; 54():49-59. PubMed ID: 25008967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer.
    Gao S; Chen S; Han D; Wang Z; Li M; Han W; Besschetnova A; Liu M; Zhou F; Barrett D; Luong MP; Owiredu J; Liang Y; Ahmed M; Petricca J; Patalano S; Macoska JA; Corey E; Chen S; Balk SP; He HH; Cai C
    Nat Genet; 2020 Oct; 52(10):1011-1017. PubMed ID: 32868907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene.
    Liu Z; Ren G; Shangguan C; Guo L; Dong Z; Li Y; Zhang W; Zhao L; Hou P; Zhang Y; Wang X; Lu J; Huang B
    PLoS One; 2012; 7(7):e40943. PubMed ID: 22808286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Somatic molecular subtyping of prostate tumors from HOXB13 G84E carriers.
    Lotan TL; Torres A; Zhang M; Tosoian JJ; Guedes LB; Fedor H; Hicks J; Ewing CM; Isaacs SD; Johng D; De Marzo AM; Isaacs WB
    Oncotarget; 2017 Apr; 8(14):22772-22782. PubMed ID: 28186998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network.
    Zhang Y; Huang YX; Wang DL; Yang B; Yan HY; Lin LH; Li Y; Chen J; Xie LM; Huang YS; Liao JY; Hu KS; He JH; Saw PE; Xu X; Yin D
    Theranostics; 2020; 10(23):10823-10837. PubMed ID: 32929382
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2.
    Lee K; Na W; Maeng JH; Wu H; Ju BG
    J Biosci; 2013 Mar; 38(1):105-12. PubMed ID: 23385818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.
    Song H; Zhang B; Watson MA; Humphrey PA; Lim H; Milbrandt J
    Oncogene; 2009 Sep; 28(37):3307-19. PubMed ID: 19597465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FOXA2 controls the cis-regulatory networks of pancreatic cancer cells in a differentiation grade-specific manner.
    Milan M; Balestrieri C; Alfarano G; Polletti S; Prosperini E; Spaggiari P; Zerbi A; Diaferia GR; Natoli G
    EMBO J; 2019 Oct; 38(20):e102161. PubMed ID: 31531882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations in the methylome of the stromal tumour microenvironment signal the presence and severity of prostate cancer.
    Lawrence MG; Pidsley R; Niranjan B; Papargiris M; Pereira BA; Richards M; Teng L; Norden S; Ryan A; Frydenberg M; Stirzaker C; Taylor RA; Risbridger GP; Clark SJ
    Clin Epigenetics; 2020 Mar; 12(1):48. PubMed ID: 32188493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells.
    Mathews LA; Hurt EM; Zhang X; Farrar WL
    Mol Cancer; 2010 Oct; 9():267. PubMed ID: 20929579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development.
    Watts JA; Zhang C; Klein-Szanto AJ; Kormish JD; Fu J; Zhang MQ; Zaret KS
    PLoS Genet; 2011 Sep; 7(9):e1002277. PubMed ID: 21935353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide analysis of HOXC4 and HOXC6 regulated genes and binding sites in prostate cancer cells.
    Luo Z; Farnham PJ
    PLoS One; 2020; 15(2):e0228590. PubMed ID: 32012197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional Loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer.
    Shiina H; Breault JE; Basset WW; Enokida H; Urakami S; Li LC; Okino ST; Deguchi M; Kaneuchi M; Terashima M; Yoneda T; Shigeno K; Carroll PR; Igawa M; Dahiya R
    Cancer Res; 2005 Mar; 65(6):2130-8. PubMed ID: 15781623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneity of d-glucuronyl C5-epimerase expression and epigenetic regulation in prostate cancer.
    Prudnikova TY; Soulitzis N; Kutsenko OS; Mostovich LA; Haraldson K; Ernberg I; Kashuba VI; Spandidos DA; Zabarovsky ER; Grigorieva EV
    Cancer Med; 2013 Oct; 2(5):654-61. PubMed ID: 24403231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.