These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 34911965)
1. Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows. Van Den Bossche T; Kunath BJ; Schallert K; Schäpe SS; Abraham PE; Armengaud J; Arntzen MØ; Bassignani A; Benndorf D; Fuchs S; Giannone RJ; Griffin TJ; Hagen LH; Halder R; Henry C; Hettich RL; Heyer R; Jagtap P; Jehmlich N; Jensen M; Juste C; Kleiner M; Langella O; Lehmann T; Leith E; May P; Mesuere B; Miotello G; Peters SL; Pible O; Queiros PT; Reichl U; Renard BY; Schiebenhoefer H; Sczyrba A; Tanca A; Trappe K; Trezzi JP; Uzzau S; Verschaffelt P; von Bergen M; Wilmes P; Wolf M; Martens L; Muth T Nat Commun; 2021 Dec; 12(1):7305. PubMed ID: 34911965 [TBL] [Abstract][Full Text] [Related]
2. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome. Nalpas N; Hoyles L; Anselm V; Ganief T; Martinez-Gili L; Grau C; Droste-Borel I; Davidovic L; Altafaj X; Dumas ME; Macek B Gut Microbes; 2021; 13(1):1994836. PubMed ID: 34763597 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Mordant A; Kleiner M Microbiol Spectr; 2021 Dec; 9(3):e0187721. PubMed ID: 34908431 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S mSystems; 2024 Jul; 9(7):e0066124. PubMed ID: 38934547 [TBL] [Abstract][Full Text] [Related]
5. Metaproteomics Analysis of Host-Microbiota Interfaces. van der Post S; Arike L Methods Mol Biol; 2021; 2259():167-179. PubMed ID: 33687714 [TBL] [Abstract][Full Text] [Related]
6. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. Do K; Mehta S; Wagner R; Bhuming D; Rajczewski AT; Skubitz APN; Johnson JE; Griffin TJ; Jagtap PD mSphere; 2024 Jun; 9(6):e0079323. PubMed ID: 38780289 [TBL] [Abstract][Full Text] [Related]
7. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. Kolmeder CA; de Been M; Nikkilä J; Ritamo I; Mättö J; Valmu L; Salojärvi J; Palva A; Salonen A; de Vos WM PLoS One; 2012; 7(1):e29913. PubMed ID: 22279554 [TBL] [Abstract][Full Text] [Related]
8. Assessing the impact of protein extraction methods for human gut metaproteomics. Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725 [TBL] [Abstract][Full Text] [Related]
9. Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome. Petruschke H; Schori C; Canzler S; Riesbeck S; Poehlein A; Daniel R; Frei D; Segessemann T; Zimmerman J; Marinos G; Kaleta C; Jehmlich N; Ahrens CH; von Bergen M Microbiome; 2021 Feb; 9(1):55. PubMed ID: 33622394 [TBL] [Abstract][Full Text] [Related]
10. Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome. Lee EM; Srinivasan S; Purvine SO; Fiedler TL; Leiser OP; Proll SC; Minot SS; Deatherage Kaiser BL; Fredricks DN mSystems; 2023 Aug; 8(4):e0067822. PubMed ID: 37350639 [TBL] [Abstract][Full Text] [Related]
12. Critical steps in an environmental metaproteomics workflow. Nebauer DJ; Pearson LA; Neilan BA Environ Microbiol; 2024 May; 26(5):e16637. PubMed ID: 38760994 [TBL] [Abstract][Full Text] [Related]
13. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061 [TBL] [Abstract][Full Text] [Related]
14. An iterative workflow for mining the human intestinal metaproteome. Rooijers K; Kolmeder C; Juste C; Doré J; de Been M; Boeren S; Galan P; Beauvallet C; de Vos WM; Schaap PJ BMC Genomics; 2011 Jan; 12():6. PubMed ID: 21208423 [TBL] [Abstract][Full Text] [Related]
15. Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity. Guirro M; Herrero P; Costa A; Gual-Grau A; Ceretó-Massagué A; Hernández A; Torrell H; Arola L; Canela N J Proteomics; 2019 Oct; 209():103489. PubMed ID: 31445216 [TBL] [Abstract][Full Text] [Related]
16. Disseminating Metaproteomic Informatics Capabilities and Knowledge Using the Galaxy-P Framework. Blank C; Easterly C; Gruening B; Johnson J; Kolmeder CA; Kumar P; May D; Mehta S; Mesuere B; Brown Z; Elias JE; Hervey WJ; McGowan T; Muth T; Nunn B; Rudney J; Tanca A; Griffin TJ; Jagtap PD Proteomes; 2018 Jan; 6(1):. PubMed ID: 29385081 [TBL] [Abstract][Full Text] [Related]
17. Deep Metaproteomics Approach for the Study of Human Microbiomes. Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657 [TBL] [Abstract][Full Text] [Related]
18. Metaproteomics characterizes human gut microbiome function in colorectal cancer. Long S; Yang Y; Shen C; Wang Y; Deng A; Qin Q; Qiao L NPJ Biofilms Microbiomes; 2020 Mar; 6(1):14. PubMed ID: 32210237 [TBL] [Abstract][Full Text] [Related]
19. Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry. Wang A; Fekete EEF; Creskey M; Cheng K; Ning Z; Pfeifle A; Li X; Figeys D; Zhang X Microbiome Res Rep; 2024; 3(3):39. PubMed ID: 39421247 [No Abstract] [Full Text] [Related]
20. Advances in the clinical use of metaproteomics. Wolf M; Schallert K; Knipper L; Sickmann A; Sczyrba A; Benndorf D; Heyer R Expert Rev Proteomics; 2023; 20(4-6):71-86. PubMed ID: 37249060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]