These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34912010)

  • 1. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.).
    Nugroho ABD; Lee SW; Pervitasari AN; Moon H; Choi D; Kim J; Kim DH
    Sci Rep; 2021 Dec; 11(1):24023. PubMed ID: 34912010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of vernalization-related genes and cold memory element (CME) required for vernalization response in radish (Raphanus sativus L.).
    Lee SW; Nugroho ABD; Park M; Moon H; Kim J; Kim DH
    Plant Mol Biol; 2024 Jan; 114(1):5. PubMed ID: 38227117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish.
    Kakizaki T; Kitashiba H; Zou Z; Li F; Fukino N; Ohara T; Nishio T; Ishida M
    Plant Physiol; 2017 Mar; 173(3):1583-1593. PubMed ID: 28100450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Transcriptome and Metabolome Combined Analysis Reveals the Key Genes and Their Regulatory Model Responsible for Glucoraphasatin Accumulation in Radish Fleshy Taproots.
    Li X; Wang P; Wang J; Wang H; Liu T; Zhang X; Song J; Yang W; Wu C; Yang H; Liu L; Li X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism.
    Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L
    BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish (
    Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development.
    Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J
    Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage.
    Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D
    Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization.
    Liu C; Wang S; Xu W; Liu X
    PLoS One; 2017; 12(5):e0177594. PubMed ID: 28498850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis.
    Wang J; Qiu Y; Wang X; Yue Z; Yang X; Chen X; Zhang X; Shen D; Wang H; Song J; He H; Li X
    Sci Rep; 2017 Nov; 7(1):16040. PubMed ID: 29167500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering.
    Nie S; Li C; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Xie Y; Liu L
    BMC Genomics; 2016 May; 17():389. PubMed ID: 27216755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway.
    Gao J; Li WB; Liu HF; Chen FB
    BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.).
    Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T
    Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.).
    Liu W; Xu L; Wang Y; Shen H; Zhu X; Zhang K; Chen Y; Yu R; Limera C; Liu L
    Sci Rep; 2015 Sep; 5():14024. PubMed ID: 26357995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
    Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH
    J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus).
    Hu T; Wei Q; Wang W; Hu H; Mao W; Zhu Q; Bao C
    PLoS One; 2018; 13(9):e0204137. PubMed ID: 30248137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L
    Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights: Proteomic and metabolomic dissection of plasma-induced growth and functional compound accumulation in Raphanus sativus.
    Gupta R; Kaushik N; Negi M; Kaushik NK; Choi EH
    Food Chem; 2024 Mar; 435():137548. PubMed ID: 37804729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.