These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34912540)

  • 1. Structural insight into an atomic layer deposition (ALD) grown Al
    Kim SM; Armutlulu A; Liao WC; Hosseini D; Stoian D; Chen Z; Abdala PM; Copéret C; Müller C
    Catal Sci Technol; 2021 Nov; 11(23):7563-7577. PubMed ID: 34912540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Selectivity and Stability in Methane Dry Reforming by Atomic Layer Deposition on Ni-CeO
    Lucas J; Padmanabha Naveen NS; Janik MJ; Alexopoulos K; Noh G; Aireddy D; Ding K; Dorman JA; Dooley KM
    ACS Catal; 2024 Jun; 14(12):9115-9133. PubMed ID: 38933468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al
    Zhang S; Tang L; Yu J; Zhan W; Wang L; Guo Y; Guo Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58605-58618. PubMed ID: 34866393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Ni-Ru and Ni-Re Catalysts for Dry Reforming of Methane: Understanding the Synergies of the Selected Promoters.
    Álvarez Moreno A; Ramirez-Reina T; Ivanova S; Roger AC; Centeno MÁ; Odriozola JA
    Front Chem; 2021; 9():694976. PubMed ID: 34307298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Stable Ni-B/Honeycomb-Structural Al
    Luo Y; Su T; Chen L; Ji H; Qin Z
    Chem Asian J; 2024 Oct; 19(20):e202400700. PubMed ID: 39073286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO
    Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J
    Front Chem; 2022; 10():993691. PubMed ID: 36118307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane.
    Zhang W; Zhao H; Song H; Chou L
    Chem Asian J; 2024 Sep; 19(17):e202400503. PubMed ID: 38842469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.
    Liao X; Gerdts R; Parker SF; Chi L; Zhao Y; Hill M; Guo J; Jones MO; Jiang Z
    Phys Chem Chem Phys; 2016 Jun; 18(26):17311-9. PubMed ID: 27326792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Nature Support on Methane and CO
    Fakeeha AH; Kasim SO; Ibrahim AA; Abasaeed AE; Al-Fatesh AS
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coking-resistant dry reforming of methane over Ni/γ-Al
    Yang B; Deng J; Li H; Yan T; Zhang J; Zhang D
    iScience; 2021 Jul; 24(7):102747. PubMed ID: 34278257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel Particles Selectively Confined in the Mesoporous Channels of SBA-15 Yielding a Very Stable Catalyst for DRM Reaction.
    Rodriguez-Gomez A; Pereñiguez R; Caballero A
    J Phys Chem B; 2018 Jan; 122(2):500-510. PubMed ID: 28723096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition.
    Joo S; Seong A; Kwon O; Kim K; Lee JH; Gorte RJ; Vohs JM; Han JW; Kim G
    Sci Adv; 2020 Aug; 6(35):eabb1573. PubMed ID: 32923635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts.
    Kim SM; Abdala PM; Margossian T; Hosseini D; Foppa L; Armutlulu A; van Beek W; Comas-Vives A; Copéret C; Müller C
    J Am Chem Soc; 2017 Feb; 139(5):1937-1949. PubMed ID: 28068106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future Paradigm of 3D Printed Ni-Based Metal Organic Framework Catalysts for Dry Methane Reforming: Techno-economic and Environmental Analyses.
    Ong JL; Loy ACM; Teng SY; How BS
    ACS Omega; 2022 May; 7(18):15369-15384. PubMed ID: 35571820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alumina-Magnesia-Supported Ni for Hydrogen Production via the Dry Reforming of Methane: A Cost-Effective Catalyst System.
    Abahussain AAM; Al-Fatesh AS; Patel N; Alreshaidan SB; Bamatraf NA; Ibrahim AA; Elnour AY; Abu-Dahrieh JK; Abasaeed AE; Fakeeha AH; Kumar R
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Coke Deposition Vis-à-Vis DRM Activity over Magnesia-Alumina Supported Ni-Fe, Ni-Co, Ni-Ce, and Ni-Sr Catalysts.
    Alanazi YM; Patel N; Fakeeha AH; Abu-Dahrieh J; Ibrahim AA; Abasaeed AE; Kumar R; Al-Fatesh A
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO
    Hong Phuong P; Cam Anh H; Tri N; Phung Anh N; Cam Loc L
    ACS Omega; 2022 Jun; 7(23):20092-20103. PubMed ID: 35721961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of carbon nanotubes and nanofibers by thermal CVD on SiO2 and Al2O3 support layers.
    Aguiar MR; Verissimo C; Ramos AC; Moshkalev SA; Swart JW
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4143-50. PubMed ID: 19916421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.