BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34912782)

  • 21. Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans.
    Ha KC; White TC
    Antimicrob Agents Chemother; 1999 Apr; 43(4):763-8. PubMed ID: 10103178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benchmarking of QSAR models for blood-brain barrier permeation.
    Konovalov DA; Coomans D; Deconinck E; Heyden YV
    J Chem Inf Model; 2007; 47(4):1648-56. PubMed ID: 17602606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of new azoles with potent activity against Candida spp. and Candida albicans biofilms through virtual screening.
    Sari S; Kart D; Öztürk N; Kaynak FB; Gencel M; Taşkor G; Karakurt A; Saraç S; Eşsiz Ş; Dalkara S
    Eur J Med Chem; 2019 Oct; 179():634-648. PubMed ID: 31279296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimum Inhibition of Amphotericin-B-Resistant
    Touil HFZ; Boucherit K; Boucherit-Otmani Z; Khoder G; Madkour M; Soliman SSM
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32098224
    [No Abstract]   [Full Text] [Related]  

  • 25. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.
    Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of Biofilm Formation by
    Lee JH; Kim YG; Khadke SK; Yamano A; Watanabe A; Lee J
    ACS Infect Dis; 2019 Jul; 5(7):1177-1187. PubMed ID: 31055910
    [No Abstract]   [Full Text] [Related]  

  • 27. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated
    Veerapandian R; Vediyappan G
    Front Microbiol; 2019; 10():2328. PubMed ID: 31681200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
    Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M
    Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans.
    Sullivan DJ; Moran GP; Pinjon E; Al-Mosaid A; Stokes C; Vaughan C; Coleman DC
    FEMS Yeast Res; 2004 Jan; 4(4-5):369-76. PubMed ID: 14734017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogenic factors in Candida biofilm-related infectious diseases.
    Hirota K; Yumoto H; Sapaar B; Matsuo T; Ichikawa T; Miyake Y
    J Appl Microbiol; 2017 Feb; 122(2):321-330. PubMed ID: 27770500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved gene ontology annotation for biofilm formation, filamentous growth, and phenotypic switching in Candida albicans.
    Inglis DO; Skrzypek MS; Arnaud MB; Binkley J; Shah P; Wymore F; Sherlock G
    Eukaryot Cell; 2013 Jan; 12(1):101-8. PubMed ID: 23143685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay.
    Heintz-Buschart A; Eickhoff H; Hohn E; Bilitewski U
    J Biotechnol; 2013 Mar; 164(1):137-42. PubMed ID: 23262131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Research for Quinazoline-2,4-diones as HPPD Inhibitors Based on 2D-MLR and 3D-QSAR Models.
    Fu Y; Sun YN; Cao HF; Yi KH; Zhao LX; Li JZ; Ye F
    Comb Chem High Throughput Screen; 2017; 20(9):748-759. PubMed ID: 28637410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteus vulgaris and Proteus mirabilis Decrease Candida albicans Biofilm Formation by Suppressing Morphological Transition to Its Hyphal Form.
    Lee KH; Park SJ; Choi SJ; Park JY
    Yonsei Med J; 2017 Nov; 58(6):1135-1143. PubMed ID: 29047237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Vacuolar Ca
    Luna-Tapia A; DeJarnette C; Sansevere E; Reitler P; Butts A; Hevener KE; Palmer GE
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30728284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans.
    Toenjes KA; Stark BC; Brooks KM; Johnson DI
    J Med Microbiol; 2009 Jun; 58(Pt 6):779-790. PubMed ID: 19429755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking.
    Worachartcheewan A; Songtawee N; Siriwong S; Prachayasittikul S; Nantasenamat C; Prachayasittikul V
    Med Chem; 2019; 15(4):328-340. PubMed ID: 30251609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).
    Bujak R; Struck-Lewicka W; Kaliszan M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015 Apr; 108():29-37. PubMed ID: 25703237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.