These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34913210)

  • 21. Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.
    Ma Q; Liu Z; Zhang J; Fu C; Li R; Sun Y; Tong T; Gu Y
    Eur J Radiol; 2024 May; 174():111402. PubMed ID: 38461737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer.
    Schurink NW; van Kranen SR; van Griethuysen JJM; Roberti S; Snaebjornsson P; Bakers FCH; de Bie SH; Bosma GPT; Cappendijk VC; Geenen RWF; Neijenhuis PA; Peterson GM; Veeken CJ; Vliegen RFA; Peters FP; Bogveradze N; El Khababi N; Lahaye MJ; Maas M; Beets GL; Beets-Tan RGH; Lambregts DMJ
    Eur Radiol; 2023 Dec; 33(12):8889-8898. PubMed ID: 37452176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer.
    Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H
    Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy.
    De Felice F; Magnante AL; Musio D; Ciolina M; De Cecco CN; Rengo M; Laghi A; Tombolini V
    Eur J Surg Oncol; 2017 Jul; 43(7):1324-1329. PubMed ID: 28363512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer.
    Choi MH; Oh SN; Rha SE; Choi JI; Lee SH; Jang HS; Kim JG; Grimm R; Son Y
    J Magn Reson Imaging; 2016 Jul; 44(1):212-20. PubMed ID: 26666560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of dynamic perfusion magnetic resonance imaging in patients with local advanced rectal cancer.
    Ippolito D; Drago SG; Pecorelli A; Maino C; Querques G; Mariani I; Franzesi CT; Sironi S
    World J Gastroenterol; 2020 May; 26(20):2657-2668. PubMed ID: 32523318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis.
    He J; Wang SX; Liu P
    Br J Radiol; 2024 Jun; 97(1159):1243-1254. PubMed ID: 38730550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI.
    Bostel T; Dreher C; Wollschläger D; Mayer A; König F; Bickelhaupt S; Schlemmer HP; Huber PE; Sterzing F; Bäumer P; Debus J; Nicolay NH
    Radiat Oncol; 2020 Jul; 15(1):171. PubMed ID: 32653003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI.
    Nie K; Shi L; Chen Q; Hu X; Jabbour SK; Yue N; Niu T; Sun X
    Clin Cancer Res; 2016 Nov; 22(21):5256-5264. PubMed ID: 27185368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion-weighted MRI and
    Xu X; Sun ZY; Wu HW; Zhang CP; Hu B; Rong L; Chen HY; Xie HY; Wang YM; Lin HP; Bai YR; Ye Q; Ma XM
    Radiat Oncol; 2021 Jul; 16(1):132. PubMed ID: 34281566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contrast-enhanced MRI for T Restaging of Locally Advanced Rectal Cancer Following Neoadjuvant Chemotherapy and Radiation Therapy.
    Lu QY; Guan Z; Zhang XY; Li XT; Sun RJ; Li QY; Sun YS
    Radiology; 2022 Nov; 305(2):364-372. PubMed ID: 35852424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Deep Learning Model to Predict the Response to Neoadjuvant Chemoradiotherapy by the Pretreatment Apparent Diffusion Coefficient Images of Locally Advanced Rectal Cancer.
    Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS
    Front Oncol; 2020; 10():574337. PubMed ID: 33194680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathological correlation with diffusion restriction on diffusion-weighted imaging in patients with pathological complete response after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: preliminary results.
    Jang KM; Kim SH; Choi D; Lee SJ; Park MJ; Min K
    Br J Radiol; 2012 Sep; 85(1017):e566-72. PubMed ID: 22422387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-Based Multiparametric MRI Model for Preoperative T-Stage in Rectal Cancer.
    Wei Y; Wang H; Chen Z; Zhu Y; Li Y; Lu B; Pan K; Wen C; Cao G; He Y; Zhou J; Pan Z; Wang M
    J Magn Reson Imaging; 2024 Mar; 59(3):1083-1092. PubMed ID: 37367938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomic Features of Primary Rectal Cancers on Baseline T
    Antunes JT; Ofshteyn A; Bera K; Wang EY; Brady JT; Willis JE; Friedman KA; Marderstein EL; Kalady MF; Stein SL; Purysko AS; Paspulati R; Gollamudi J; Madabhushi A; Viswanath SE
    J Magn Reson Imaging; 2020 Nov; 52(5):1531-1541. PubMed ID: 32216127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.