These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34913335)

  • 1. Superlattice Engineering with Chemically Precise Molecular Building Blocks.
    Yan XY; Guo QY; Liu XY; Wang Y; Wang J; Su Z; Huang J; Bian F; Lin H; Huang M; Lin Z; Liu T; Liu Y; Cheng SZD
    J Am Chem Soc; 2021 Dec; 143(51):21613-21621. PubMed ID: 34913335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unimolecular Nanoparticles toward More Precise Regulations of Self-Assembled Superlattices in Soft Matter.
    Lei H; Liu Y; Liu T; Guo QY; Yan XY; Wang Y; Zhang W; Su Z; Huang J; Xu W; Bian FG; Huang M; Cheng SZD
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202203433. PubMed ID: 35478477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Alloys Constructed with Distinct Mesoatoms via Self-Sorting Assembly of Giant Shape Amphiphiles.
    Wang Y; Huang J; Yan XY; Lei H; Liu XY; Guo QY; Liu Y; Liu T; Huang M; Bian F; Su Z; Cheng SZD
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202200637. PubMed ID: 35174943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding quasiperiodicity in soft matter: Supramolecular decagonal quasicrystals by binary giant molecule blends.
    Liu Y; Liu T; Yan XY; Guo QY; Lei H; Huang Z; Zhang R; Wang Y; Wang J; Liu F; Bian FG; Meijer EW; Aida T; Huang M; Cheng SZD
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled soft alloy with Frank-Kasper phases beyond metals.
    Liu XY; Yan XY; Liu Y; Qu H; Wang Y; Wang J; Guo QY; Lei H; Li XH; Bian F; Cao XY; Zhang R; Wang Y; Huang M; Lin Z; Meijer EW; Aida T; Kong X; Cheng SZD
    Nat Mater; 2024 Apr; 23(4):570-576. PubMed ID: 38297141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tubular Monolayer Superlattices of Hollow Mn
    Li T; Xue B; Wang B; Guo G; Han D; Yan Y; Dong A
    J Am Chem Soc; 2017 Sep; 139(35):12133-12136. PubMed ID: 28837323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Superlattices: The Roles of Soft Ligands.
    Si KJ; Chen Y; Shi Q; Cheng W
    Adv Sci (Weinh); 2018 Jan; 5(1):1700179. PubMed ID: 29375958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle Superlattices as Quasi-Frank-Kasper Phases.
    Travesset A
    Phys Rev Lett; 2017 Sep; 119(11):115701. PubMed ID: 28949219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Frank-Kasper Z phase from shape amphiphile self-assembly.
    Su Z; Hsu CH; Gong Z; Feng X; Huang J; Zhang R; Wang Y; Mao J; Wesdemiotis C; Li T; Seifert S; Zhang W; Aida T; Huang M; Cheng SZD
    Nat Chem; 2019 Oct; 11(10):899-905. PubMed ID: 31548666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D superlattices
    Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J
    Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants.
    Yue K; Huang M; Marson RL; He J; Huang J; Zhou Z; Wang J; Liu C; Yan X; Wu K; Guo Z; Liu H; Zhang W; Ni P; Wesdemiotis C; Zhang WB; Glotzer SC; Cheng SZ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14195-14200. PubMed ID: 27911786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection.
    Coropceanu I; Boles MA; Talapin DV
    J Am Chem Soc; 2019 Apr; 141(14):5728-5740. PubMed ID: 30868880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Tunable SnS-TaS
    Roberts DM; Bardgett D; Gorman BP; Perkins JD; Zakutayev A; Bauers SR
    Nano Lett; 2020 Oct; 20(10):7059-7067. PubMed ID: 32945683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered hierarchical superlattice amplifies coated-CeO
    Gallucci N; Appavou MS; Cowieson N; D'Errico G; Di Girolamo R; Lettieri S; Sica F; Vitiello G; Paduano L
    J Colloid Interface Sci; 2024 Apr; 659():926-935. PubMed ID: 38219311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Assembly of Two-Dimensional Perovskite Nanosheets as Building Blocks for New Ferroelectrics.
    Khan MS; Osada M; Dong L; Kim YH; Ebina Y; Sasaki T
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1783-1790. PubMed ID: 33347270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.