These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Potential Energy Curves for Formation of the CH Lakshmanan S; Spada RFK; Machado FBC; Hase WL J Phys Chem A; 2019 Oct; 123(41):8968-8975. PubMed ID: 31536345 [TBL] [Abstract][Full Text] [Related]
3. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
4. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH Raghunath P; Lee YP; Lin MC J Phys Chem A; 2017 May; 121(20):3871-3878. PubMed ID: 28453276 [TBL] [Abstract][Full Text] [Related]
5. Direct Dynamics Simulation of the Thermal Lakshmanan S; Pratihar S; Machado FBC; Hase WL J Phys Chem A; 2018 May; 122(21):4808-4818. PubMed ID: 29697979 [TBL] [Abstract][Full Text] [Related]
6. Direct Dynamics Simulations of the CH Lakshmanan S; Pratihar S; Hase WL J Phys Chem A; 2019 May; 123(20):4360-4369. PubMed ID: 31034236 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic and Kinetic Approach on the Propargyl Radical (C Pham TV; Trang HTT ACS Omega; 2023 May; 8(19):16859-16868. PubMed ID: 37214685 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and pressure-dependent HO Luo PL Phys Chem Chem Phys; 2023 Feb; 25(5):4062-4069. PubMed ID: 36651102 [TBL] [Abstract][Full Text] [Related]
9. Communication: Determination of the molecular structure of the simplest Criegee intermediate CH2OO. Nakajima M; Endo Y J Chem Phys; 2013 Sep; 139(10):101103. PubMed ID: 24050321 [TBL] [Abstract][Full Text] [Related]
10. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO. Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917 [TBL] [Abstract][Full Text] [Related]
11. Direct Dynamics Simulations of the Unimolecular Decomposition of the Randomly Excited Yao Y; Lakshmanan S; Pratihar S; Hase WL J Phys Chem A; 2020 Mar; 124(9):1821-1828. PubMed ID: 32024358 [TBL] [Abstract][Full Text] [Related]
12. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Sun C; Xu B; Lv L; Zhang S Phys Chem Chem Phys; 2019 Aug; 21(30):16583-16590. PubMed ID: 31314020 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of the Reactions of CH Cornwell ZA; Harrison AW; Murray C J Phys Chem A; 2021 Oct; 125(39):8557-8571. PubMed ID: 34554761 [TBL] [Abstract][Full Text] [Related]
14. Photochemistry of the Simplest Criegee Intermediate, CH Li Y; Gong Q; Yue L; Wang W; Liu F J Phys Chem Lett; 2018 Mar; 9(5):978-981. PubMed ID: 29420035 [TBL] [Abstract][Full Text] [Related]
15. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. Kaipara R; Rajakumar B J Phys Chem A; 2018 Nov; 122(43):8433-8445. PubMed ID: 30281306 [TBL] [Abstract][Full Text] [Related]
17. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH Sun C; Zhang S; Yue J; Zhang S J Phys Chem A; 2018 Nov; 122(44):8729-8737. PubMed ID: 30336026 [TBL] [Abstract][Full Text] [Related]
18. Temperature-dependent kinetics of the atmospheric reaction between CH Wang PB; Truhlar DG; Xia Y; Long B Phys Chem Chem Phys; 2022 Jun; 24(21):13066-13073. PubMed ID: 35583864 [TBL] [Abstract][Full Text] [Related]
19. Chemical Kinetic Study of the Reaction of CH Chao W; Markus CR; Okumura M; Winiberg FAF; Percival CJ J Phys Chem Lett; 2024 Apr; 15(13):3690-3697. PubMed ID: 38546268 [TBL] [Abstract][Full Text] [Related]
20. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals. Xu ZF; Raghunath P; Lin MC J Phys Chem A; 2015 Jul; 119(28):7404-17. PubMed ID: 25751420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]