These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34913616)

  • 61. A wireless "Janus" soft gripper with multiple tactile sensors.
    Han L; Wang R; Dong Y; Zhang X; Wu C; Zhao X
    Nanoscale Adv; 2022 Nov; 4(22):4756-4765. PubMed ID: 36381512
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities.
    Chi Y; Li Y; Zhao Y; Hong Y; Tang Y; Yin J
    Adv Mater; 2022 May; 34(19):e2110384. PubMed ID: 35172026
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Soluble Polymer Pneumatic Networks and a Single-Pour System for Improved Accessibility and Durability of Soft Robotic Actuators.
    Greer AH; King E; Lee EH; Sardesai AN; Chen Y; Obuz SE; Graf Y; Ma T; Chow DY; Fu T; Somani J; Schork B; Sankuratri Y; Barnes T; Broadus B; Costner C; Golecki HM
    Soft Robot; 2021 Apr; 8(2):144-151. PubMed ID: 32486905
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing.
    Li J; Orrego S; Pan J; He P; Kang SH
    Nanoscale; 2019 Feb; 11(6):2779-2786. PubMed ID: 30672952
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses.
    Zeng J; Zhao J; Li C; Qi Y; Liu G; Fu X; Zhou H; Zhang C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161721
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN.
    Pohtongkam S; Srinonchat J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577230
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Lightweight and Low-Voltage-Operating Linear Actuator Based on the Electroactive Polymer Polypyrrole.
    Kim Y; Yoshida Y
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631512
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices.
    Mun S; Yun S; Nam S; Park SK; Park S; Park BJ; Lim JM; Kyung KU
    IEEE Trans Haptics; 2018; 11(1):15-21. PubMed ID: 29611809
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing.
    Zhang Y; Kong D; Shi Y; Cai M; Yu Q; Li S; Wang K; Liu C
    Front Bioeng Biotechnol; 2023; 11():1196922. PubMed ID: 37614630
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material.
    Xu Z; Wei DW; Bao RY; Wang Y; Ke K; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2022 May; 14(19):22521-22530. PubMed ID: 35522609
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Near-Infrared Light-Driven MXene/Liquid Crystal Elastomer Bimorph Membranes for Closed-Loop Controlled Self-Sensing Bionic Robots.
    Yang Y; Meng L; Zhang J; Gao Y; Hao Z; Liu Y; Niu M; Zhang X; Liu X; Liu S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2307862. PubMed ID: 37985651
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Photocrosslinking Patterning of Single-Layered Polymer Actuators for Controllable Motility and Automatic Devices.
    Wei J; Qiu X; Zhang L
    ACS Appl Mater Interfaces; 2019 May; 11(17):16252-16259. PubMed ID: 30950596
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Direct 3D Printing of Highly Anisotropic, Flexible, Constriction-Resistive Sensors for Multidirectional Proprioception in Soft Robots.
    Mousavi S; Howard D; Zhang F; Leng J; Wang CH
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15631-15643. PubMed ID: 32129594
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-sensing coaxial muscle fibers with bi-lengthwise actuation.
    Dong L; Ren M; Wang Y; Qiao J; Wu Y; He J; Wei X; Di J; Li Q
    Mater Horiz; 2021 Aug; 8(9):2541-2552. PubMed ID: 34870310
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.
    Nasab AM; Sabzehzar A; Tatari M; Majidi C; Shan W
    Soft Robot; 2017 Dec; 4(4):411-420. PubMed ID: 29251572
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn.
    Xu L; Peng Q; Zhu Y; Zhao X; Yang M; Wang S; Xue F; Yuan Y; Lin Z; Xu F; Sun X; Li J; Yin W; Li Y; He X
    Nanoscale; 2019 Apr; 11(17):8124-8132. PubMed ID: 30994688
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of Sustainable Robotic Materials and Finite Element Analysis of Soft Actuators Under Biodegradation.
    Nagai T; Kurita A; Shintake J
    Front Robot AI; 2021; 8():760485. PubMed ID: 34901171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.