These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34913791)
1. Evaluation of nasal function after endoscopic endonasal surgery for pituitary adenoma: a computational fluid dynamics study. Lou M; Zhang L; Wang S; Ma R; Gong M; Hu Z; Zhang J; Shang Y; Tong Z; Zheng G; Zhang Y Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1449-1458. PubMed ID: 34913791 [TBL] [Abstract][Full Text] [Related]
2. Computational fluid dynamics after endoscopic endonasal skull base surgery-possible empty nose syndrome in the context of middle turbinate resection. Maza G; Li C; Krebs JP; Otto BA; Farag AA; Carrau RL; Zhao K Int Forum Allergy Rhinol; 2019 Feb; 9(2):204-211. PubMed ID: 30488577 [TBL] [Abstract][Full Text] [Related]
3. Numerical Simulation of Nasal Airflow Aerodynamics, and Warming and Humidification in Models of Clival Chordoma Pre and Post-Endoscopic Endonasal Surgery. Lou M; Zhang L; Zhang J; Ma R; Gong M; Hu Z; Wang S; Zhang Y; Zheng G Respir Physiol Neurobiol; 2021 Sep; 291():103693. PubMed ID: 34020066 [TBL] [Abstract][Full Text] [Related]
4. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study. Alam S; Li C; Bradburn KH; Zhao K; Lee TS Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120 [TBL] [Abstract][Full Text] [Related]
5. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I Respir Physiol Neurobiol; 2022 Aug; 302():103917. PubMed ID: 35500884 [TBL] [Abstract][Full Text] [Related]
6. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Hariri BM; Rhee JS; Garcia GJ Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247 [TBL] [Abstract][Full Text] [Related]
7. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study. Siu J; Inthavong K; Dong J; Shang Y; Douglas RG Clin Biomech (Bristol, Avon); 2021 Jan; 81():105237. PubMed ID: 33272646 [TBL] [Abstract][Full Text] [Related]
8. [Impact of sinonasal anatomic changes after endoscopic anterior skull base surgery on nasal airflow and air conditioning: a computational fluid dynamics study]. Dong D; Zhao YL; Wang C; Tian JS; Zhang YD; Wei RH; Qiao XJ; Guo G; Yin TN; Hu HJ Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 May; 58(5):445-451. PubMed ID: 37100751 [No Abstract] [Full Text] [Related]
9. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics. Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372 [TBL] [Abstract][Full Text] [Related]
11. Computational Fluid Dynamics to Evaluate the Effectiveness of Inferior Turbinate Reduction Techniques to Improve Nasal Airflow. Lee TS; Goyal P; Li C; Zhao K JAMA Facial Plast Surg; 2018 Jul; 20(4):263-270. PubMed ID: 29372235 [TBL] [Abstract][Full Text] [Related]
12. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy. A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807 [TBL] [Abstract][Full Text] [Related]
13. Computational fluid dynamics calculations in inferior turbinate surgery: a cohort study. Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I Eur Arch Otorhinolaryngol; 2023 Nov; 280(11):4923-4931. PubMed ID: 37341759 [TBL] [Abstract][Full Text] [Related]
14. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics. Dayal A; Rhee JS; Garcia GJ Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis. Wang T; Chen D; Wang PH; Chen J; Deng J Braz J Med Biol Res; 2016 Aug; 49(9):e5182. PubMed ID: 27533764 [TBL] [Abstract][Full Text] [Related]
16. Computational fluid dynamics (CFD), virtual rhinomanometry, and virtual surgery for neonatal congenital nasal pyriform aperture stenosis. Moreddu E; Meister L; Médale M; Nicollas R Int J Pediatr Otorhinolaryngol; 2024 Jul; 182():112025. PubMed ID: 38950452 [TBL] [Abstract][Full Text] [Related]
18. Is nasal airflow disrupted after endoscopic skull base surgery? A short review. Májovský M; Trnka F; Schmirlerová H; Betka J; Hyhlík T; Netuka D Neurosurg Rev; 2022 Dec; 45(6):3641-3646. PubMed ID: 36166111 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity. Chen XB; Lee HP; Chong VF; Wang de Y Am J Rhinol Allergy; 2010; 24(5):e118-22. PubMed ID: 21244728 [TBL] [Abstract][Full Text] [Related]
20. [Simulation of inferior turbinate reduction using computational fluid dynamics methods]. Guo YF; Shan YM; Cai HK; Chen XM; Gao XQ Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Feb; 31(4):257-261. PubMed ID: 29871238 [No Abstract] [Full Text] [Related] [Next] [New Search]