BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34914093)

  • 1. Acceleration of target production in co-culture by enhancing intermediate consumption through adaptive laboratory evolution.
    Kawai R; Toya Y; Miyoshi K; Murakami M; Niide T; Horinouchi T; Maeda T; Shibai A; Furusawa C; Shimizu H
    Biotechnol Bioeng; 2022 Mar; 119(3):936-945. PubMed ID: 34914093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Mevalonate to Isoprenol Using Light Energy in
    Sano M; Tanaka R; Kamata K; Hirono-Hara Y; Ishii J; Matsuda F; Hara KY; Shimizu H; Toya Y
    ACS Synth Biol; 2022 Dec; 11(12):3966-3972. PubMed ID: 36441576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli.
    Kang A; Mendez-Perez D; Goh EB; Baidoo EEK; Benites VT; Beller HR; Keasling JD; Adams PD; Mukhopadhyay A; Lee TS
    Metab Eng; 2019 Dec; 56():85-96. PubMed ID: 31499175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels.
    Pang B; Li J; Eiben CB; Oksen E; Barcelos C; Chen R; Englund E; Sundstrom E; Keasling JD
    Metab Eng; 2021 Nov; 68():210-219. PubMed ID: 34673235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of mevalonate by recombinant Escherichia coli using acetic acid as a carbon source.
    Xu X; Xie M; Zhao Q; Xian M; Liu H
    Bioengineered; 2018 Jan; 9(1):116-123. PubMed ID: 28574746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway.
    Zahiri HS; Yoon SH; Keasling JD; Lee SH; Won Kim S; Yoon SC; Shin YC
    Metab Eng; 2006 Sep; 8(5):406-16. PubMed ID: 16815062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary engineering of E. coli MG1655 for tolerance against isoprenol.
    Babel H; Krömer JO
    Biotechnol Biofuels; 2020 Nov; 13(1):183. PubMed ID: 33292484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production.
    Kang A; Meadows CW; Canu N; Keasling JD; Lee TS
    Metab Eng; 2017 May; 41():125-134. PubMed ID: 28389395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering Mevalonate Pathway Mediated by RNA Scaffolds for Mevalonate and Isoprene Production in
    Liu CL; Dong HG; Xue K; Sun L; Yang Y; Liu X; Li Y; Bai Z; Tan TW
    ACS Synth Biol; 2022 Oct; 11(10):3305-3317. PubMed ID: 36198145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels.
    Zheng Y; Liu Q; Li L; Qin W; Yang J; Zhang H; Jiang X; Cheng T; Liu W; Xu X; Xian M
    Biotechnol Biofuels; 2013; 6():57. PubMed ID: 23618128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial production of mevalonate.
    Wang CH; Hou J; Deng HK; Wang LJ
    J Biotechnol; 2023 Jun; 370():1-11. PubMed ID: 37209831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.
    Kang A; George KW; Wang G; Baidoo E; Keasling JD; Lee TS
    Metab Eng; 2016 Mar; 34():25-35. PubMed ID: 26708516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli.
    Liu CL; Dong HG; Zhan J; Liu X; Yang Y
    J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.
    Nagai H; Masuda A; Toya Y; Matsuda F; Shimizu H
    Metab Eng; 2018 May; 47():1-9. PubMed ID: 29499375
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wada K; Toya Y; Banno S; Yoshikawa K; Matsuda F; Shimizu H
    J Biosci Bioeng; 2017 Feb; 123(2):177-182. PubMed ID: 27570223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity evaluation of glycolytic promoters from Escherichia coli and application for mevalonate biosynthesis.
    Guo J; Feng S; Cheng X
    J Microbiol Methods; 2020 Jul; 174():105946. PubMed ID: 32413369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.