These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34914592)
41. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system. Ross SA; Rice C; Von Behren K; Meyer A; Alexander R; Murfin S Physiother Theory Pract; 2015 Jan; 31(1):53-60. PubMed ID: 25230893 [TBL] [Abstract][Full Text] [Related]
42. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836 [TBL] [Abstract][Full Text] [Related]
43. Lower-limb sagittal joint angles during gait can be predicted based on foot acceleration and angular velocity. Inai T; Takabayashi T PeerJ; 2023; 11():e16131. PubMed ID: 37744216 [TBL] [Abstract][Full Text] [Related]
44. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis. Yakimovich T; Lemaire ED; Kofman J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5924-7. PubMed ID: 17946729 [TBL] [Abstract][Full Text] [Related]
45. The influence of different force and pressure measuring transducers on lower extremity kinematics measured during walking. Greenhalgh A; Taylor PJ; Sinclair J Gait Posture; 2014 Jul; 40(3):476-9. PubMed ID: 24909580 [TBL] [Abstract][Full Text] [Related]
46. Validity Verification of Human Pose-Tracking Algorithms for Gait Analysis Capability. Matsuda T; Fujino Y; Makabe H; Morisawa T; Takahashi T; Kakegawa K; Matsumoto T; Kiyohara T; Torimoto Y; Miwa M; Fujiwara T; Daida H Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676133 [TBL] [Abstract][Full Text] [Related]
47. Long-term follow-up after patellar tendon shortening for flexed knee gait in bilateral spastic cerebral palsy. Kuchen DB; Eichelberger P; Baur H; Rutz E Gait Posture; 2020 Sep; 81():85-90. PubMed ID: 32693350 [TBL] [Abstract][Full Text] [Related]
48. Ankle-foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia. Sekiguchi Y; Owaki D; Honda K; Fukushi K; Hiroi N; Nozaki T; Izumi SI Gait Posture; 2020 Sep; 81():27-32. PubMed ID: 32652487 [TBL] [Abstract][Full Text] [Related]
49. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study. Berner K; Cockcroft J; Louw Q Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239 [TBL] [Abstract][Full Text] [Related]
50. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment. Tanaka R; Takimoto H; Yamasaki T; Higashi A J Biomech; 2018 Apr; 71():281-285. PubMed ID: 29475751 [TBL] [Abstract][Full Text] [Related]
51. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults. Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485 [No Abstract] [Full Text] [Related]
52. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600 [TBL] [Abstract][Full Text] [Related]
53. Effects of joint motion constraints on the gait of normal subjects and their implications on the further development of hybrid FES orthosis for paraplegic persons. Yang L; Condie DN; Granat MH; Paul JP; Rowley DI J Biomech; 1996 Feb; 29(2):217-26. PubMed ID: 8849815 [TBL] [Abstract][Full Text] [Related]
54. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Scataglini S; Abts E; Van Bocxlaer C; Van den Bussche M; Meletani S; Truijen S Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894476 [TBL] [Abstract][Full Text] [Related]
55. Criterion validity of neural networks to assess lower limb motion during cycling. Bini RR; Serrancoli G; Santiago PRP; Pinto A; Moura F J Sports Sci; 2023 Jan; 41(1):36-44. PubMed ID: 36975046 [TBL] [Abstract][Full Text] [Related]
56. The Kinematic and Kinetic Responses of the Trunk and Lower Extremity Joints during Walking with and without the Spinal Orthosis. Wang C; Li X; Guo Y; Du W; Guo H; Chen W Int J Environ Res Public Health; 2022 Jun; 19(11):. PubMed ID: 35682535 [TBL] [Abstract][Full Text] [Related]
57. Two-dimensional video-based analysis of human gait using pose estimation. Stenum J; Rossi C; Roemmich RT PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585 [TBL] [Abstract][Full Text] [Related]
58. Biomechanical response to ankle-foot orthosis stiffness during running. Russell Esposito E; Choi HS; Owens JG; Blanck RV; Wilken JM Clin Biomech (Bristol); 2015 Dec; 30(10):1125-32. PubMed ID: 26371854 [TBL] [Abstract][Full Text] [Related]
59. Stepping with an ankle foot orthosis re-examined: a mechanical perspective for clinical decision making. Nair PM; Rooney KL; Kautz SA; Behrman AL Clin Biomech (Bristol); 2010 Jul; 25(6):618-22. PubMed ID: 20362373 [TBL] [Abstract][Full Text] [Related]
60. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking. Xu X; McGorry RW; Chou LS; Lin JH; Chang CC Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]