These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34914595)

  • 1. A Polar-Demodulation-Based Impedance-Measurement IC Using Frequency-Shift Technique With Low Power Consumption and Wide Frequency Range.
    Cheon SI; Kweon SJ; Kim Y; Koo J; Ha S; Je M
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1210-1220. PubMed ID: 34914595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy.
    Cheon SI; Kweon SJ; Kim Y; Koo J; Ha S; Je M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.
    Bhattacharyya M; Gruenwald W; Jansen D; Reindl L; Aghassi-Hagmann J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29735939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Power Adaptive, 1.22-pW/Hz, 10-MHz Read-Out Front-End for Bio-Impedance Measurement.
    Takhti M; Odame K
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):725-734. PubMed ID: 31135369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Cutoff Frequency Reduction in Neural Amplifiers: Analysis and Implementation in CMOS 65 nm.
    Hashemi Noshahr F; Nabavi M; Gosselin B; Sawan M
    Front Neurosci; 2021; 15():667846. PubMed ID: 34149347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry.
    Shen B; Dawes J; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):766-778. PubMed ID: 35727776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Reconfigurable Tri-Mode Frequency-Locked Loop Readout Circuit for Biosensor Interfaces.
    Yu S; Chou TH; Bose S; Cook J; Park J; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):768-781. PubMed ID: 37347623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Linear CMOS Image Sensor Design Based on an Adaptive Nonlinear Ramp Generator and Fully Differential Pipeline Sampling Quantization with a Double Auto-Zeroing Technique.
    Li C; Han B; He J; Guo Z; Wu L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-Differential Folded-Cascode Front-End Receiver Amplifier Integrated Circuit for Capacitive Micromachined Ultrasonic Transducers.
    Du Y; He C; Hao G; Zhang W; Xue C
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30691047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications.
    Wu Y; Jiang D; Habibollahi M; Almarri N; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):997-1007. PubMed ID: 32746362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wide-Bandwidth PVT-Reconfigurable CMOS Power Amplifier with an Integrated Tunable-Output Impedance Matching Network.
    Mariappan S; Rajendran J; Kumar N; Othman M; Nathan A; Grebennikov A; Yarman BS
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Low-Power Single-Path Bio-Impedance Measurement System Using an Analog-to-Digital Converter for I/Q Demodulation.
    Rezaee-Dehsorkh H; Ravanshad N; Shamsaki A; Fakour MR; Aliparast P
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1129-1137. PubMed ID: 36223349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.
    Tang F; Bermak A; Abbes A; Benammar MA
    ScientificWorldJournal; 2014; 2014():208540. PubMed ID: 24772012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An instrumentation amplifier as a front-end for a four-electrode bioimpedance measurement.
    Zagar T; Krizaj D
    Physiol Meas; 2007 Aug; 28(8):N57-65. PubMed ID: 17664668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-power and Low-noise Multi-purpose Chopper Amplifier with High CMRR and PSRR.
    Shad E; Molinas M; Ytterdal T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3998-4001. PubMed ID: 33018876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.
    Royo G; Sánchez-Azqueta C; Gimeno C; Aldea C; Celma S
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DC-100 kHz Tunable Readout IC for Impedance Spectroscopy and Amperometric Measurement of Electrochemical Sensors.
    Shen B; Johnston ML
    Conf Proc (Midwest Symp Circuits Syst); 2020 Aug; 2020():651-654. PubMed ID: 33312081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 1.55 μW Bio-Impedance Measurement System for Implantable Cardiac Pacemakers in 0.18 μm CMOS.
    Zamani M; Rezaeiyan Y; Shoaei O; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):211-221. PubMed ID: 29377809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 400 MHz Wireless Neural Signal Processing IC With 625 $\times$ On-Chip Data Reduction and Reconfigurable BFSK/QPSK Transmitter Based on Sequential Injection Locking.
    Teng KH; Wu T; Liu X; Yang Z; Heng CH
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):547-557. PubMed ID: 28278483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface.
    Yu Z; Yang X; Chung S
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.