These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34914857)
1. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity. Zhu M; Zhao L; Ran Q; Zhang Y; Peng R; Lu G; Jia X; Chao D; Wang C Adv Sci (Weinh); 2022 Feb; 9(4):e2103896. PubMed ID: 34914857 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage. Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857 [TBL] [Abstract][Full Text] [Related]
4. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. Choi W; Harada D; Oyaizu K; Nishide H J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047 [TBL] [Abstract][Full Text] [Related]
5. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries. Oka K; Strietzel C; Emanuelsson R; Nishide H; Oyaizu K; Strømme M; Sjödin M ChemSusChem; 2020 May; 13(9):2280-2285. PubMed ID: 32267605 [TBL] [Abstract][Full Text] [Related]
6. Ladder-Type Redox-Active Polymer Achieves Ultra-Stable and Fast Proton Storage in Aqueous Proton Batteries. He J; Shi M; Wang H; Liu H; Yang J; Yan C; Zhao J; Yang JL; Wu XL Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202410568. PubMed ID: 39083345 [TBL] [Abstract][Full Text] [Related]
7. An All-Organic Proton Battery. Emanuelsson R; Sterby M; Strømme M; Sjödin M J Am Chem Soc; 2017 Apr; 139(13):4828-4834. PubMed ID: 28293954 [TBL] [Abstract][Full Text] [Related]
8. An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures. Strietzel C; Sterby M; Huang H; Strømme M; Emanuelsson R; Sjödin M Angew Chem Int Ed Engl; 2020 Jun; 59(24):9631-9638. PubMed ID: 32180324 [TBL] [Abstract][Full Text] [Related]
9. Naphthalene dianhydride organic anode for a 'rocking-chair' zinc-proton hybrid ion battery. Ghosh M; Vijayakumar V; Kurian M; Dilwale S; Kurungot S Dalton Trans; 2021 Mar; 50(12):4237-4243. PubMed ID: 33751012 [TBL] [Abstract][Full Text] [Related]
10. Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures. Lakshmi KCS; Vedhanarayanan B; Cheng HY; Ji X; Shen HH; Lin TW J Colloid Interface Sci; 2022 Aug; 619():123-131. PubMed ID: 35378474 [TBL] [Abstract][Full Text] [Related]
11. Surface Modification of Li Hsu SC; Wang KS; Lin YT; Huang JH; Wu NJ; Kang JL; Weng HC; Liu TY Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299301 [TBL] [Abstract][Full Text] [Related]
12. Searching High-Potential Dihydroxynaphthalene Cathode for Rocking-Chair All-Organic Aqueous Proton Batteries. Zhao G; Yan X; Dai Y; Xiong J; Zhao Q; Wang X; Yu H; Gao J; Zhang N; Hu M; Yang J Small; 2024 Jan; 20(4):e2306071. PubMed ID: 37706574 [TBL] [Abstract][Full Text] [Related]
13. Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Nanocomposite as High-Performance Cathode for Aqueous Zn-Ion Batteries: The Structural and Electrochemical Characterization. Volkov FS; Eliseeva SN; Kamenskii MA; Volkov AI; Tolstopjatova EG; Glumov OV; Fu L; Kondratiev VV Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364672 [TBL] [Abstract][Full Text] [Related]
14. A Molten Alkali Approach to Tailor Hydroxyl Groups of Hexaazatrinaphthalene Toward High-Capacity and Low-Potential Anode of Aqueous Proton Batteries. Zhao G; Yan X; Dai Y; Wang X; Wang Z; Wang B; Li R; Hao Y; Yu H; Ma H; Li H; Wu C; Liu J; Hu M; Yang J Small; 2024 Dec; 20(51):e2406962. PubMed ID: 39370663 [TBL] [Abstract][Full Text] [Related]
15. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage. Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827 [TBL] [Abstract][Full Text] [Related]
16. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms. Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023 [TBL] [Abstract][Full Text] [Related]
17. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. Adil M; Ghosh A; Mitra S ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172 [TBL] [Abstract][Full Text] [Related]
18. An Ultrafast and Ultra-Low-Temperature Hydrogen Gas-Proton Battery. Zhu Z; Wang W; Yin Y; Meng Y; Liu Z; Jiang T; Peng Q; Sun J; Chen W J Am Chem Soc; 2021 Dec; 143(48):20302-20308. PubMed ID: 34806375 [TBL] [Abstract][Full Text] [Related]
19. All-Solid-State Lithium-Organic Batteries Comprising Single-Ion Polymer Nanoparticle Electrolytes. Kim B; Kang H; Kim K; Wang RY; Park MJ ChemSusChem; 2020 May; 13(9):2271-2279. PubMed ID: 32207562 [TBL] [Abstract][Full Text] [Related]
20. Bifunctional Potential Structure Design Breaks Electrolyte Limitations of Zinc Ion Battery. Gong S; Chao Y; Yang F; Wu S; Wang Y; Chao D; Jia X Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401629. PubMed ID: 38385954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]