These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3491492)

  • 1. Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training.
    Schantz PG; Sjöberg B; Svedenhag J
    Acta Physiol Scand; 1986 Nov; 128(3):397-407. PubMed ID: 3491492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity.
    Schantz PG; Henriksson J
    Acta Physiol Scand; 1987 Apr; 129(4):505-15. PubMed ID: 3591372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH shuttle enzymes and cytochrome b5 reductase in human skeletal muscle: effect of strength training.
    Schantz PG; Källman M
    J Appl Physiol (1985); 1989 Jul; 67(1):123-7. PubMed ID: 2527225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate.
    Salminen A; Vihko V; Pilström L
    Acta Physiol Scand; 1977 Nov; 101(3):318-28. PubMed ID: 202144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins.
    Schantz PG
    Acta Physiol Scand Suppl; 1986; 558():1-62. PubMed ID: 2950727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1981 Jul; 117(3):527-35. PubMed ID: 7285903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of physical training on enzymatic activity of human skeletal muscle.
    Raimondi GA; Puy RJ; Raimondi AC; Schwarz ER; Rosenberg M
    Biomedicine; 1975 Nov; 22(6):496-501. PubMed ID: 1225380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormonal regulation of malate-aspartate shuttle enzymes during postnatal development of mice.
    Dey S; Sharma R
    Indian J Biochem Biophys; 1998 Aug; 35(4):224-8. PubMed ID: 9854902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast.
    Easlon E; Tsang F; Skinner C; Wang C; Lin SJ
    Genes Dev; 2008 Apr; 22(7):931-44. PubMed ID: 18381895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in enzyme levels in hypertensive heart tissue.
    Atlante A; Abruzzese F; Seccia TM; Vulpis V; Doonan S; Pirrelli A; Marra E
    Biochem Mol Biol Int; 1995 Nov; 37(5):983-90. PubMed ID: 8624506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-specific development of malate-aspartate shuttle in the liver and kidney of mice.
    Sharma R; Dey S; Verma R
    Biochem Int; 1992 Sep; 27(6):1059-66. PubMed ID: 1445374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.
    Scholz TD; Koppenhafer SL; tenEyck CJ; Schutte BC
    Am J Physiol; 1998 Mar; 274(3):C780-8. PubMed ID: 9530110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary restriction and triiodothyronine (T3) regulation of malate-aspartate shuttle enzymes in the liver and kidney of mice.
    Goyary D; Sharma R
    Indian J Biochem Biophys; 2005 Dec; 42(6):345-9. PubMed ID: 16955734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle of trained and untrained paraplegics and tetraplegics.
    Schantz P; Sjöberg B; Widebeck AM; Ekblom B
    Acta Physiol Scand; 1997 Sep; 161(1):31-9. PubMed ID: 9381947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The noninvolvement of MDH as NAD-oxidoreductase shuttle in rat liver peroxisomes.
    Horie S; Ishii H; Itoh S; Suga T
    Biochem Int; 1984 Mar; 8(3):353-9. PubMed ID: 6477606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Histo- and cytochemical enzymatic characteristics of breast cancer].
    Kogan EA
    Arkh Patol; 1979; 41(11):19-25. PubMed ID: 518361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme activities in quadriceps femoris muscle of obese diabetic male patients.
    Vondra K; Rath R; Bass A; Slabochová Z; Teisinger J; Vitek V
    Diabetologia; 1977 Sep; 13(5):527-9. PubMed ID: 908476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.
    Wu JL; Wu QP; Huang JM; Chen R; Cai M; Tan JB
    Physiol Res; 2007; 56(2):213-220. PubMed ID: 16555951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The function of shuttle systems of liver extramitochondrial hydrogen transport in experimental atherosclerosis].
    Gil'miyairova FN; Radomskaya VM
    Vopr Med Khim; 1975; 21(5):476-80. PubMed ID: 3020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.