These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Changed crossmodal functional connectivity in older adults with hearing loss. Puschmann S; Thiel CM Cortex; 2017 Jan; 86():109-122. PubMed ID: 27930898 [TBL] [Abstract][Full Text] [Related]
3. Structural connectivity changes in unilateral hearing loss. Tsai P; Latypov TH; Hung PS; Halawani A; Srisaikaew P; Walker MR; Zhang AB; Wang W; Hassannia F; Barake R; Gordon KA; Ibrahim GM; Rutka J; Hodaie M Cereb Cortex; 2024 Jun; 34(6):. PubMed ID: 38896551 [TBL] [Abstract][Full Text] [Related]
4. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss. Xu H; Fan W; Zhao X; Li J; Zhang W; Lei P; Liu Y; Wang H; Cheng H; Shi H Hear Res; 2016 May; 335():138-148. PubMed ID: 26969260 [TBL] [Abstract][Full Text] [Related]
5. Long-Range Auditory Functional Connectivity in Hearing Loss and Rehabilitation. Ponticorvo S; Manara R; Pfeuffer J; Cappiello A; Cuoco S; Pellecchia MT; Troisi D; Scarpa A; Cassandro E; Di Salle F; Esposito F Brain Connect; 2021 Aug; 11(6):483-492. PubMed ID: 33478362 [No Abstract] [Full Text] [Related]
6. Cross-modal plasticity in adult single-sided deafness revealed by alpha band resting-state functional connectivity. Shang Y; Hinkley LB; Cai C; Mizuiri D; Cheung SW; Nagarajan SS Neuroimage; 2020 Feb; 207():116376. PubMed ID: 31756519 [TBL] [Abstract][Full Text] [Related]
7. Downward cross-modal plasticity in single-sided deafness. Qiao Y; Li X; Shen H; Zhang X; Sun Y; Hao W; Guo B; Ni D; Gao Z; Guo H; Shang Y Neuroimage; 2019 Aug; 197():608-617. PubMed ID: 31091475 [TBL] [Abstract][Full Text] [Related]
8. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss. Zhang GY; Yang M; Liu B; Huang ZC; Li J; Chen JY; Chen H; Zhang PP; Liu LJ; Wang J; Teng GJ Neuroscience; 2016 Jan; 313():149-61. PubMed ID: 26621123 [TBL] [Abstract][Full Text] [Related]
9. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Profant O; Škoch A; Balogová Z; Tintěra J; Hlinka J; Syka J Neuroscience; 2014 Feb; 260():87-97. PubMed ID: 24333969 [TBL] [Abstract][Full Text] [Related]
10. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Sa de Almeida J; Meskaldji DE; Loukas S; Lordier L; Gui L; Lazeyras F; Hüppi PS Neuroimage; 2021 Jan; 225():117440. PubMed ID: 33039621 [TBL] [Abstract][Full Text] [Related]
11. Reduced resting state functional connectivity with increasing age-related hearing loss and McGurk susceptibility. Schulte A; Thiel CM; Gieseler A; Tahden M; Colonius H; Rosemann S Sci Rep; 2020 Oct; 10(1):16987. PubMed ID: 33046800 [TBL] [Abstract][Full Text] [Related]
12. Reorganization of auditory cortex in early-deaf people: functional connectivity and relationship to hearing aid use. Shiell MM; Champoux F; Zatorre RJ J Cogn Neurosci; 2015 Jan; 27(1):150-63. PubMed ID: 25000527 [TBL] [Abstract][Full Text] [Related]
13. Functional Connectivity in Patients With Sensorineural Hearing Loss Using Resting-State MRI. Liu B; Feng Y; Yang M; Chen JY; Li J; Huang ZC; Zhang LL Am J Audiol; 2015 Jun; 24(2):145-52. PubMed ID: 25651853 [TBL] [Abstract][Full Text] [Related]
14. Connectome analysis of male world-class gymnasts using probabilistic multishell, multitissue constrained spherical deconvolution tracking. Tomita H; Kamagata K; Andica C; Uchida W; Fukuo M; Waki H; Sugano H; Tange Y; Mitsuhashi T; Lukies M; Hagiwara A; Fujita S; Wada A; Akashi T; Murata S; Harada M; Aoki S; Naito H J Neurosci Res; 2021 Oct; 99(10):2558-2572. PubMed ID: 34245603 [TBL] [Abstract][Full Text] [Related]
15. Changes of the Brain Causal Connectivity Networks in Patients With Long-Term Bilateral Hearing Loss. Zhang G; Xu LC; Zhang MF; Zou Y; He LM; Cheng YF; Zhang DS; Zhao WB; Wang XY; Wang PC; Zhang GY Front Neurosci; 2021; 15():628866. PubMed ID: 34276277 [TBL] [Abstract][Full Text] [Related]
16. White matter structural network alterations in congenital bilateral profound sensorineural hearing loss children: A graph theory analysis. Cui W; Wang S; Chen B; Fan G Hear Res; 2022 Sep; 422():108521. PubMed ID: 35660126 [TBL] [Abstract][Full Text] [Related]
17. Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study. Luan Y; Wang C; Jiao Y; Tang T; Zhang J; Teng GJ Front Neurosci; 2019; 13():222. PubMed ID: 30930739 [No Abstract] [Full Text] [Related]
18. Altered topological properties of the intrinsic functional brain network in patients with right-sided unilateral hearing loss caused by acoustic neuroma. Fan Z; Fan Z; Qiu T; Hu L; Shi Y; Xia Y; Sun X; Liu Y; Li S; Xia M; Zhu W Brain Imaging Behav; 2022 Aug; 16(4):1873-1883. PubMed ID: 35397062 [TBL] [Abstract][Full Text] [Related]
19. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults. Bidelman GM; Price CN; Shen D; Arnott SR; Alain C Hear Res; 2019 Oct; 382():107795. PubMed ID: 31479953 [TBL] [Abstract][Full Text] [Related]
20. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity. Meredith MA; Clemo HR; Corley SB; Chabot N; Lomber SG Hear Res; 2016 Mar; 333():25-36. PubMed ID: 26724756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]