These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34915272)

  • 1. Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner.
    Bennett JP; Liu YE; Quon BK; Kelly NN; Wong MC; Kennedy SF; Chow DC; Garber AK; Weiss EJ; Heymsfield SB; Shepherd JA
    Clin Nutr; 2022 Jan; 41(1):211-218. PubMed ID: 34915272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trunk-to-leg volume and appendicular lean mass from a commercial 3-dimensional optical body scanner for disease risk identification.
    Bennett JP; Wong MC; Liu YE; Quon BK; Kelly NN; Garber AK; Heymsfield SB; Shepherd JA
    Clin Nutr; 2024 Oct; 43(10):2430-2437. PubMed ID: 39305753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Dimensional optical scanning for body composition assessment: A 4-component model comparison of four commercially available scanners.
    Tinsley GM; Moore ML; Benavides ML; Dellinger JR; Adamson BT
    Clin Nutr; 2020 Oct; 39(10):3160-3167. PubMed ID: 32113641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Children and Adolescents' Anthropometrics Body Composition from 3-D Optical Surface Scans.
    Wong MC; Ng BK; Kennedy SF; Hwaung P; Liu EY; Kelly NN; Pagano IS; Garber AK; Chow DC; Heymsfield SB; Shepherd JA
    Obesity (Silver Spring); 2019 Nov; 27(11):1738-1749. PubMed ID: 31689009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a rapid multicompartment body composition model using 3-dimensional optical imaging and bioelectrical impedance analysis.
    Bennett JP; Cataldi D; Liu YE; Kelly NN; Quon BK; Schoeller DA; Kelly T; Heymsfield SB; Shepherd JA
    Clin Nutr; 2024 Feb; 43(2):346-356. PubMed ID: 38142479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy and Precision of 3-dimensional Optical Imaging for Body Composition by Age, BMI, and Ethnicity.
    Wong MC; Bennett JP; Quon B; Leong LT; Tian IY; Liu YE; Kelly NN; McCarthy C; Chow D; Pujades S; Garber AK; Maskarinec G; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Sep; 118(3):657-671. PubMed ID: 37474106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital anthropometry via three-dimensional optical scanning: evaluation of four commercially available systems.
    Tinsley GM; Moore ML; Dellinger JR; Adamson BT; Benavides ML
    Eur J Clin Nutr; 2020 Jul; 74(7):1054-1064. PubMed ID: 31685968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-sectional assessment of body composition and detection of malnutrition risk in participants with low body mass index and eating disorders using 3D optical surface scans.
    Garber AK; Bennett JP; Wong MC; Tian IY; Maskarinec G; Kennedy SF; McCarthy C; Kelly NN; Liu YE; Machen VI; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Oct; 118(4):812-821. PubMed ID: 37598747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed 3-dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies.
    Ng BK; Sommer MJ; Wong MC; Pagano I; Nie Y; Fan B; Kennedy S; Bourgeois B; Kelly N; Liu YE; Hwaung P; Garber AK; Chow D; Vaisse C; Curless B; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2019 Dec; 110(6):1316-1326. PubMed ID: 31553429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A device-agnostic shape model for automated body composition estimates from 3D optical scans.
    Tian IY; Wong MC; Kennedy S; Kelly NN; Liu YE; Garber AK; Heymsfield SB; Curless B; Shepherd JA
    Med Phys; 2022 Oct; 49(10):6395-6409. PubMed ID: 35837761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital anthropometric volumes: Toward the development and validation of a universal software.
    Sobhiyeh S; Dunkel A; Dechenaud M; Mehrnezhad A; Kennedy S; Shepherd J; Wolenski P; Heymsfield SB
    Med Phys; 2021 Jul; 48(7):3654-3664. PubMed ID: 33694162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applicability of a commercial 3DO body scanner in measuring body composition in Chinese adults with overweight and obesity: a secondary analysis based on a weight-loss clinical trial.
    Wang J; Song A; Tang M; Xiang Y; Zhou Y; Chen Z; Heber D; Tang Q; Xu R
    J Int Soc Sports Nutr; 2024 Dec; 21(1):2307963. PubMed ID: 38265726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring body composition change for intervention studies with advancing 3D optical imaging technology in comparison to dual-energy X-ray absorptiometry.
    Wong MC; Bennett JP; Leong LT; Tian IY; Liu YE; Kelly NN; McCarthy C; Wong JMW; Ebbeling CB; Ludwig DS; Irving BA; Scott MC; Stampley J; Davis B; Johannsen N; Matthews R; Vincellette C; Garber AK; Maskarinec G; Weiss E; Rood J; Varanoske AN; Pasiakos SM; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Apr; 117(4):802-813. PubMed ID: 36796647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and precision of multiple body composition methods and associations with muscle strength in athletes of varying hydration: The Da Kine Study.
    Cataldi D; Bennett JP; Wong MC; Quon BK; Liu YE; Kelly NN; Kelly T; Schoeller DA; Heymsfield SB; Shepherd JA
    Clin Nutr; 2024 Jan; 43(1):284-294. PubMed ID: 38104490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pose-independent method for accurate and precise body composition from 3D optical scans.
    Wong MC; Ng BK; Tian I; Sobhiyeh S; Pagano I; Dechenaud M; Kennedy SF; Liu YE; Kelly NN; Chow D; Garber AK; Maskarinec G; Pujades S; Black MJ; Curless B; Heymsfield SB; Shepherd JA
    Obesity (Silver Spring); 2021 Nov; 29(11):1835-1847. PubMed ID: 34549543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults.
    Day K; Kwok A; Evans A; Mata F; Verdejo-Garcia A; Hart K; Ward LC; Truby H
    Nutrients; 2018 Oct; 10(10):. PubMed ID: 30308974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated body composition estimation from device-agnostic 3D optical scans in pediatric populations.
    Tian IY; Wong MC; Nguyen WM; Kennedy S; McCarthy C; Kelly NN; Liu YE; Garber AK; Heymsfield SB; Curless B; Shepherd JA
    Clin Nutr; 2023 Sep; 42(9):1619-1630. PubMed ID: 37481870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agreement of anthropometric and body composition measures predicted from 2D smartphone images and body impedance scales with criterion methods.
    Nana A; Staynor JMD; Arlai S; El-Sallam A; Dhungel N; Smith MK
    Obes Res Clin Pract; 2022; 16(1):37-43. PubMed ID: 35094958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical imaging technology for body size and shape analysis: evaluation of a system designed for personal use.
    Kennedy S; Hwaung P; Kelly N; Liu YE; Sobhiyeh S; Heo M; Shepherd JA; Heymsfield SB
    Eur J Clin Nutr; 2020 Jun; 74(6):920-929. PubMed ID: 31551533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical anthropometrics and body composition from 3D whole-body surface scans.
    Ng BK; Hinton BJ; Fan B; Kanaya AM; Shepherd JA
    Eur J Clin Nutr; 2016 Nov; 70(11):1265-1270. PubMed ID: 27329614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.