These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34915288)

  • 1. Sub-Sampled Imaging for STEM: Maximising Image Speed, Resolution and Precision Through Reconstruction Parameter Refinement.
    Nicholls D; Wells J; Stevens A; Zheng Y; Castagna J; Browning ND
    Ultramicroscopy; 2022 Mar; 233():113451. PubMed ID: 34915288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIM-STEM Lab: Incorporating Compressed Sensing Theory for Fast STEM Simulation.
    Robinson AW; Nicholls D; Wells J; Moshtaghpour A; Kirkland A; Browning ND
    Ultramicroscopy; 2022 Dec; 242():113625. PubMed ID: 36183423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans.
    Li X; Dyck O; Kalinin SV; Jesse S
    Microsc Microanal; 2018 Dec; 24(6):623-633. PubMed ID: 30588912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes.
    Nicholls D; Lee J; Amari H; Stevens AJ; Mehdi BL; Browning ND
    Nanoscale; 2020 Oct; 12(41):21248-21254. PubMed ID: 33063813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast reconstruction of atomic-scale STEM-EELS images from sparse sampling.
    Monier E; Oberlin T; Brun N; Li X; Tencé M; Dobigeon N
    Ultramicroscopy; 2020 Aug; 215():112993. PubMed ID: 32516700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.
    Stevens A; Yang H; Carin L; Arslan I; Browning ND
    Microscopy (Oxf); 2014 Feb; 63(1):41-51. PubMed ID: 24151325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
    Li Y; Matej S; Metzler SD
    Med Phys; 2014 Dec; 41(12):121912. PubMed ID: 25471972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose.
    Chen Z; Odstrcil M; Jiang Y; Han Y; Chiu MH; Li LJ; Muller DA
    Nat Commun; 2020 Jun; 11(1):2994. PubMed ID: 32533001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image reconstruction for sub-sampled atomic force microscopy images using deep neural networks.
    Luo Y; Andersson SB
    Micron; 2020 Mar; 130():102814. PubMed ID: 31931325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous sampling pattern design algorithm for atomic force microscopy images.
    Luo Y; Andersson SB
    Ultramicroscopy; 2019 Jan; 196():167-179. PubMed ID: 30412842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards real-time STEM simulations through targeted subsampling strategies.
    Robinson AW; Wells J; Nicholls D; Moshtaghpour A; Chi M; Kirkland AI; Browning ND
    J Microsc; 2023 Apr; 290(1):53-66. PubMed ID: 36800515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways.
    Ortega E; Nicholls D; Browning ND; de Jonge N
    Sci Rep; 2021 Nov; 11(1):22722. PubMed ID: 34811427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Nonrigid Registration for Scanning Transmission Electron Microscopy Image Series.
    Zhang C; Feng J; Yankovich AB; Kvit A; Berkels B; Voyles PM
    Microsc Microanal; 2021 Feb; 27(1):90-98. PubMed ID: 33222719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-uniform image reconstruction for fast photoacoustic microscopy of histology imaging.
    Zhou LX; Xia Y; Dai R; Liu AR; Zhu SW; Shi P; Song W; Yuan XC
    Biomed Opt Express; 2023 May; 14(5):2080-2090. PubMed ID: 37206133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based automatic inpainting for material microscopic images.
    Ma B; Ma B; Gao M; Wang Z; Ban X; Huang H; Wu W
    J Microsc; 2021 Mar; 281(3):177-189. PubMed ID: 32901937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution imaging of organic pharmaceutical crystals by transmission electron microscopy and scanning moirĂ© fringes.
    S'ari M; Koniuch N; Brydson R; Hondow N; Brown A
    J Microsc; 2020 Sep; 279(3):197-206. PubMed ID: 31985063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.
    Sang X; Lupini AR; Ding J; Kalinin SV; Jesse S; Unocic RR
    Sci Rep; 2017 Mar; 7():43585. PubMed ID: 28272404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ResNet-based image inpainting method for enhancing the imaging speed of single molecule localization microscopy.
    Zhou Z; Kuang W; Wang Z; Huang ZL
    Opt Express; 2022 Aug; 30(18):31766-31784. PubMed ID: 36242252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of atomic force microscopy image using compressed sensing.
    Han G; Lin B; Lin Y
    Micron; 2018 Feb; 105():1-10. PubMed ID: 29132029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.