These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34915360)

  • 21. Thermal changes during drilling in human femur by rotary ultrasonic bone drilling machine: A histologic and ultrastructural study.
    Singh RP; Pandey PM; Mir MA; Mridha AR
    J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1023-1033. PubMed ID: 34854533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling.
    Zheng Q; Xia L; Zhang X; Zhang C; Hu Y
    Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.
    Shakouri E; Haghighi Hassanalideh H; Gholampour S
    Proc Inst Mech Eng H; 2018 Jan; 232(1):45-53. PubMed ID: 29153053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing temperature elevation of robotic bone drilling.
    Feldmann A; Wandel J; Zysset P
    Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental investigation on the effect of drill quality on the performance of bone drilling.
    Alam K; Piya S; Al-Ghaithi A; Silberschmidth V
    Biomed Tech (Berl); 2020 Jan; 65(1):113-120. PubMed ID: 31437122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of potential tissue heating during percutaneous drill-assisted bone sampling in an in vivo porcine study.
    Niehues SM; Elezkurtaj S; Bresssem KK; Hamm B; Erxleben C; Vahldiek J; Adams LC
    Skeletal Radiol; 2022 Apr; 51(4):829-836. PubMed ID: 34462782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of drilling parameters for thermal bone necrosis prevention.
    Akhbar MFA; Yusoff AR
    Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis.
    Gholampour S; Deh HHH
    Biomed Eng Online; 2019 May; 18(1):65. PubMed ID: 31126308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parameters affecting mechanical and thermal responses in bone drilling: A review.
    Lee J; Chavez CL; Park J
    J Biomech; 2018 Apr; 71():4-21. PubMed ID: 29559242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadaveric Study of Bone Tissue Temperature During Pin Site Drilling Using Fluoroptic Thermography.
    Muffly MT; Winegar CD; Miller MC; Altman GT
    J Orthop Trauma; 2018 Aug; 32(8):e315-e319. PubMed ID: 29738397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the effect of micro-lubrication in orthopedic drilling.
    Jamil M; Khan AM; Mia M; Iqbal A; Gupta MK; Sen B
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1024-1041. PubMed ID: 31347443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Heat Generation in Unidirectional Versus Oscillatory Modes During K-Wire Insertion in Bone.
    Luo Y; Chen L; Finney FT; Park DW; Talusan PG; Holmes JR; Shih AJ
    J Orthop Res; 2019 Sep; 37(9):1903-1909. PubMed ID: 31081555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods.
    Bai X; Hou S; Li K; Qu Y; Zhang T
    Med Eng Phys; 2019 Jul; 69():1-7. PubMed ID: 31229386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone.
    Lin W; Yang F
    Math Biosci Eng; 2022 Aug; 19(11):11657-11674. PubMed ID: 36124607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of drilling direction and depth on thermal necrosis during tibia drilling: An in vitro study.
    Gholampour S; Shakouri E; Deh HHH
    Technol Health Care; 2018; 26(4):687-697. PubMed ID: 30040770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Damaging temperature during the machining of bone].
    Fuchsberger A
    Unfallchirurgie; 1988 Aug; 14(4):173-83. PubMed ID: 3176186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental Investigation of Suitable Cutting Conditions of Dry Drilling into High-Strength Structural Steel.
    Pelikán L; Slaný M; Beránek L; Andronov V; Nečas M; Čepová L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical evaluation of sequential bone drilling strategies based on thermal damage.
    Tai BL; Palmisano AC; Belmont B; Irwin TA; Holmes J; Shih AJ
    Med Eng Phys; 2015 Sep; 37(9):855-61. PubMed ID: 26163230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.
    Omar NA; McKinley JC
    Foot (Edinb); 2018 Jun; 35():63-69. PubMed ID: 29807300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.