These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34915369)
1. Comparison analysis of widely-targeted metabolomics revealed the variation of potential astringent ingredients and their dynamic accumulation in the seed coats of both Carya cathayensis and Carya illinoinensis. Li Y; Wang J; Wang K; Lyu S; Ren L; Huang C; Pei D; Xing Y; Wang Y; Xu Y; Li P; Xi J; Si X; Ye H; Huang J Food Chem; 2022 Apr; 374():131688. PubMed ID: 34915369 [TBL] [Abstract][Full Text] [Related]
2. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles. Jia X; Luo H; Xu M; Zhai M; Guo Z; Qiao Y; Wang L Molecules; 2018 Feb; 23(2):. PubMed ID: 29462910 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive metabolomics analysis of Torreya grandis nuts with the effective de-astringent treatment during the postharvest ripening stage. Song L; Meng X; Song H; Gao L; Gao Y; Chen W; Huan W; Suo J; Yu W; Hu Y; Yang B; Zhang Z; Wu J Food Chem; 2023 Jan; 398():133859. PubMed ID: 35987001 [TBL] [Abstract][Full Text] [Related]
4. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. Huang Y; Xiao L; Zhang Z; Zhang R; Wang Z; Huang C; Huang R; Luan Y; Fan T; Wang J; Shen C; Zhang S; Wang X; Randall J; Zheng B; Wu J; Zhang Q; Xia G; Xu C; Chen M; Zhang L; Jiang W; Gao L; Chen Z; Leslie CA; Grauke LJ; Huang J Gigascience; 2019 May; 8(5):. PubMed ID: 31049561 [TBL] [Abstract][Full Text] [Related]
5. Two Carya Species, Huang S; Xu Y; Li X; Ye B; Jin S Plants (Basel); 2024 Jul; 13(14):. PubMed ID: 39065493 [TBL] [Abstract][Full Text] [Related]
6. Analysis of lipidomics profile of Carya cathayensis nuts and lipid dynamic changes during embryonic development. Huang C; Li Y; Wang K; Xi J; Xu Y; Si X; Pei D; Lyu S; Xia G; Wang J; Li P; Ye H; Xing Y; Wang Y; Huang J Food Chem; 2022 Feb; 370():130975. PubMed ID: 34507207 [TBL] [Abstract][Full Text] [Related]
7. CcMYB12 Positively Regulates Flavonoid Accumulation during Fruit Development in Wang Y; Ye H; Wang K; Huang C; Si X; Wang J; Xu Y; Huang Y; Huang J; Li Y Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555261 [TBL] [Abstract][Full Text] [Related]
8. Targeted metabolomics reveals key phenolic changes in pecan nut quality deterioration under different storage conditions. Jia X; Tan W; Guo Z; Mo Z; Liu P; Xu M Food Chem; 2023 Oct; 424():136377. PubMed ID: 37267651 [TBL] [Abstract][Full Text] [Related]
9. Flavonoid Synthesis and Metabolism During the Fruit Development in Hickory ( Chen JH; Hou N; Xv X; Zhang D; Fan TQ; Zhang QX; Huang YJ Front Plant Sci; 2022; 13():896421. PubMed ID: 35615140 [TBL] [Abstract][Full Text] [Related]
10. Variation in pigments in pecan testa during kernel development and storage. Zhang C; Wang K; Ren H; Chang J; Yao X Food Chem; 2024 Apr; 438():137989. PubMed ID: 37992607 [TBL] [Abstract][Full Text] [Related]
11. Development of SSR Markers in Hickory (Carya cathayensis Sarg.) and Their Transferability to Other Species of Carya. Li J; Zeng Y; Shen D; Xia G; Huang Y; Huang Y; Chang J; Huang J; Wang Z Curr Genomics; 2014 Oct; 15(5):357-79. PubMed ID: 25435799 [TBL] [Abstract][Full Text] [Related]
12. Isolation and Characterization of Three Zhang C; Yao X; Ren H; Wang K; Chang J Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31216753 [TBL] [Abstract][Full Text] [Related]
13. RNA-Seq Reveals Flavonoid Biosynthesis-Related Genes in Pecan ( Carya illinoinensis) Kernels. Zhang C; Yao X; Ren H; Chang J; Wang K J Agric Food Chem; 2019 Jan; 67(1):148-158. PubMed ID: 30563335 [TBL] [Abstract][Full Text] [Related]
14. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt. El Hawary SS; Saad S; El Halawany AM; Ali ZY; El Bishbishy M Pharm Biol; 2016; 54(5):788-98. PubMed ID: 26450069 [TBL] [Abstract][Full Text] [Related]
15. Global Transcriptome Analysis Revealed the Molecular Regulation Mechanism of Pigment and Reactive Oxygen Species Metabolism During the Stigma Development of Xing Y; Wang K; Huang C; Huang J; Zhao Y; Si X; Li Y Front Plant Sci; 2022; 13():881394. PubMed ID: 35615144 [TBL] [Abstract][Full Text] [Related]
16. Metabolic profiling revealed the organ-specific distribution differences of tannins and flavonols in pecan. Xu M; Liu P; Jia X; Zhai M; Zhou S; Wu B; Guo Z Food Sci Nutr; 2020 Sep; 8(9):4987-5006. PubMed ID: 32994960 [No Abstract] [Full Text] [Related]
17. Genome-Wide Identification of Tannase Genes and Their Function of Wound Response and Astringent Substances Accumulation in Juglandaceae. Wang J; Wang K; Lyu S; Huang J; Huang C; Xing Y; Wang Y; Xu Y; Li P; Hong J; Xi J; Si X; Ye H; Li Y Front Plant Sci; 2021; 12():664470. PubMed ID: 34079571 [TBL] [Abstract][Full Text] [Related]
18. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo. Lyu YZ; Jiang H; Sun HN; Yang Y; Chao Y; Huang LB; Dong XY Tree Physiol; 2023 Sep; 43(9):1675-1690. PubMed ID: 37171624 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg. Huang YJ; Zhou Q; Huang JQ; Zeng YR; Wang ZJ; Zhang QX; Zhu YH; Shen C; Zheng BS Plant Physiol Biochem; 2015 Jun; 91():28-35. PubMed ID: 25863888 [TBL] [Abstract][Full Text] [Related]
20. Use of lignocellulosic wastes of pecan (Carya illinoinensis) in the cultivation of Ganoderma lucidum. Ozcariz-Fermoselle MV; Fraile-Fabero R; Girbés-Juan T; Arce-Cervantes O; Oria de Rueda-Salgueiro JA; Azul AM Rev Iberoam Micol; 2018; 35(2):103-109. PubMed ID: 29731312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]