These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34915572)

  • 1. Convolution-Based Model-Solving Method for Three-Dimensional, Unsteady, Partial Differential Equations.
    Zha W; Zhang W; Li D; Xing Y; He L; Tan J
    Neural Comput; 2022 Jan; 34(2):518-540. PubMed ID: 34915572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed kernel function neural networks for solving partial differential equations.
    Fu Z; Xu W; Liu S
    Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved data-free surrogate model for solving partial differential equations using deep neural networks.
    Chen X; Chen R; Wan Q; Xu R; Liu J
    Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural operators for robust output regulation of hyperbolic PDEs.
    Xiao Y; Yuan Y; Luo B; Xu X
    Neural Netw; 2024 Nov; 179():106620. PubMed ID: 39137470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural network-based PDE solving algorithm with high precision.
    Jiang Z; Jiang J; Yao Q; Yang G
    Sci Rep; 2023 Mar; 13(1):4479. PubMed ID: 36934124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constrained backpropagation approach for the adaptive solution of partial differential equations.
    Rudd K; Di Muro G; Ferrari S
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):571-84. PubMed ID: 24807452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular surface construction by PDE transform.
    Zheng Q; Yang S; Wei GW
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):291-316. PubMed ID: 22582140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elliptic PDE learning is provably data-efficient.
    Boullé N; Halikias D; Townsend A
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2303904120. PubMed ID: 37722063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate optimal control design for nonlinear one-dimensional parabolic PDE systems using empirical eigenfunctions and neural network.
    Luo B; Wu HN
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1538-49. PubMed ID: 22588610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
    Karnakov P; Litvinov S; Koumoutsakos P
    PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations.
    Leake C; Mortari D
    Mach Learn Knowl Extr; 2020 Mar; 2(1):37-55. PubMed ID: 32478283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning-based spectral methods for partial differential equations.
    Meuris B; Qadeer S; Stinis P
    Sci Rep; 2023 Jan; 13(1):1739. PubMed ID: 36720936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.