BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34915807)

  • 1. Developmental differences of
    Bertović I; Bura A; Jurak Begonja A
    Platelets; 2022 Aug; 33(6):887-899. PubMed ID: 34915807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD34+ cells derived from fetal liver contained a high proportion of immature megakaryocytic progenitor cells.
    Ma DC; Sun YH; Zuo W; Chang KZ; Chu JJ; Liu YG
    Eur J Haematol; 2000 May; 64(5):304-14. PubMed ID: 10863976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation.
    Mazharian A; Watson SP; Séverin S
    Exp Hematol; 2009 Oct; 37(10):1238-1249.e5. PubMed ID: 19619605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis.
    Geue S; Aurbach K; Manke MC; Manukjan G; Münzer P; Stegner D; Brähler C; Walker-Allgaier B; Märklin M; Borst CE; Quintanilla-Fend L; Rath D; Geisler T; Salih HR; Seizer P; Lang F; Nieswandt B; Gawaz M; Schulze H; Pleines I; Borst O
    Blood; 2019 Nov; 134(21):1847-1858. PubMed ID: 31578203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome.
    Strassel C; Eckly A; Léon C; Petitjean C; Freund M; Cazenave JP; Gachet C; Lanza F
    Haematologica; 2009 Jun; 94(6):800-10. PubMed ID: 19377075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mice.
    Capitano M; Zhao L; Cooper S; Thorsheim C; Suzuki A; Huang X; Dent AL; Marks MS; Abrams CS; Broxmeyer HE
    Blood; 2018 Sep; 132(10):1027-1038. PubMed ID: 30042096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.
    Sui Z; Nowak RB; Sanada C; Halene S; Krause DS; Fowler VM
    Blood; 2015 Jul; 126(4):520-30. PubMed ID: 25964668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand.
    Cramer EM; Norol F; Guichard J; Breton-Gorius J; Vainchenker W; Massé JM; Debili N
    Blood; 1997 Apr; 89(7):2336-46. PubMed ID: 9116277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of human megakaryocytes to high shear rates accelerates platelet production.
    Dunois-Lardé C; Capron C; Fichelson S; Bauer T; Cramer-Bordé E; Baruch D
    Blood; 2009 Aug; 114(9):1875-83. PubMed ID: 19525480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Factor analysis of effective platelet-producing ability of fetal liver-derived cells].
    Yu MR; Yang GH; Liu GH; Zeng YT; Xue Y; Ma QW; Zeng FY
    Zhonghua Nei Ke Za Zhi; 2022 Jun; 61(6):664-672. PubMed ID: 35673747
    [No Abstract]   [Full Text] [Related]  

  • 11. Isolation, In Vitro Differentiation, and Culture of Murine Megakaryocytes From Fetal Liver and Adult Bone Marrow.
    Mott K; Schulze H
    Curr Protoc; 2023 May; 3(5):e783. PubMed ID: 37204185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Megakaryocyte/platelet-derived TGF-β1 inhibits megakaryopoiesis in bone marrow by regulating thrombopoietin production in liver.
    Gostynska S; Venkatesan T; Subramani K; Cortez B; Robertson A; Subrahmanian S; Dube P; Ahamed J
    Blood Adv; 2022 Jun; 6(11):3321-3328. PubMed ID: 35358295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42.
    Pleines I; Dütting S; Cherpokova D; Eckly A; Meyer I; Morowski M; Krohne G; Schulze H; Gachet C; Debili N; Brakebusch C; Nieswandt B
    Blood; 2013 Oct; 122(18):3178-87. PubMed ID: 23861250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamin 3 participates in the growth and development of megakaryocytes.
    Reems JA; Wang W; Tsubata K; Abdurrahman N; Sundell B; Tijssen MR; van der Schoot E; Di Summa F; Patel-Hett S; Italiano J; Gilligan DM
    Exp Hematol; 2008 Dec; 36(12):1714-27. PubMed ID: 19007685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genomic and proteomic blueprint of mouse megakaryocytes derived from embryonic stem cells.
    Merico V; Zuccotti M; Carpi D; Baev D; Mulas F; Sacchi L; Bellazzi R; Pastorelli R; Redi CA; Moratti R; Garagna S; Balduini A
    J Thromb Haemost; 2012 May; 10(5):907-15. PubMed ID: 22372922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD41+/CD45+ cells without acetylcholinesterase activity are immature and a major megakaryocytic population in murine bone marrow.
    Matsumura-Takeda K; Sogo S; Isakari Y; Harada Y; Nishioka K; Kawakami T; Ono T; Taki T
    Stem Cells; 2007 Apr; 25(4):862-70. PubMed ID: 17420226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.
    Rojnuckarin P; Kaushansky K
    Blood; 2001 Jan; 97(1):154-61. PubMed ID: 11133755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets.
    Schmitt A; Guichard J; Massé JM; Debili N; Cramer EM
    Exp Hematol; 2001 Nov; 29(11):1295-302. PubMed ID: 11698125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Don't you forget about me(gakaryocytes).
    Tilburg J; Becker IC; Italiano JE
    Blood; 2022 Jun; 139(22):3245-3254. PubMed ID: 34582554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation.
    Aguilar A; Pertuy F; Eckly A; Strassel C; Collin D; Gachet C; Lanza F; Léon C
    Blood; 2016 Oct; 128(16):2022-2032. PubMed ID: 27503502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.