These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34915921)
1. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Suphavilai C; Chia S; Sharma A; Tu L; Da Silva RP; Mongia A; DasGupta R; Nagarajan N Genome Med; 2021 Dec; 13(1):189. PubMed ID: 34915921 [TBL] [Abstract][Full Text] [Related]
2. Predicting Cancer Drug Response using a Recommender System. Suphavilai C; Bertrand D; Nagarajan N Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820 [TBL] [Abstract][Full Text] [Related]
3. Predicting drug response from single-cell expression profiles of tumours. Pellecchia S; Viscido G; Franchini M; Gambardella G BMC Med; 2023 Dec; 21(1):476. PubMed ID: 38041118 [TBL] [Abstract][Full Text] [Related]
4. Integration of Pan-Cancer Cell Line and Single-Cell Transcriptomic Profiles Enables Inference of Therapeutic Vulnerabilities in Heterogeneous Tumors. Zhang W; Maeser D; Lee A; Huang Y; Gruener RF; Abdelbar IG; Jena S; Patel AG; Huang RS Cancer Res; 2024 Jun; 84(12):2021-2033. PubMed ID: 38581448 [TBL] [Abstract][Full Text] [Related]
5. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Müller S; Cho A; Liu SJ; Lim DA; Diaz A Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414 [TBL] [Abstract][Full Text] [Related]
6. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data. Zeng P; Ma Y; Lin Z Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176 [TBL] [Abstract][Full Text] [Related]
7. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
8. Prioritizing prognostic-associated subpopulations and individualized recurrence risk signatures from single-cell transcriptomes of colorectal cancer. Tong M; Lin Y; Yang W; Song J; Zhang Z; Xie J; Tian J; Luo S; Liang C; Huang J; Yu R Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36946415 [TBL] [Abstract][Full Text] [Related]
9. Single-Cell Sequencing Technologies in Precision Oncology. Melnekoff DT; Laganà A Adv Exp Med Biol; 2022; 1361():269-282. PubMed ID: 35230694 [TBL] [Abstract][Full Text] [Related]
10. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD). Chiu YJ; Ni CE; Huang YH BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883 [TBL] [Abstract][Full Text] [Related]
11. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Olbrecht S; Busschaert P; Qian J; Vanderstichele A; Loverix L; Van Gorp T; Van Nieuwenhuysen E; Han S; Van den Broeck A; Coosemans A; Van Rompuy AS; Lambrechts D; Vergote I Genome Med; 2021 Jul; 13(1):111. PubMed ID: 34238352 [TBL] [Abstract][Full Text] [Related]
13. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy. Ding S; Chen X; Shen K Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419 [TBL] [Abstract][Full Text] [Related]
14. webSCST: an interactive web application for single-cell RNA-sequencing data and spatial transcriptomic data integration. Zhang Z; Cui F; Su W; Dou L; Xu A; Cao C; Zou Q Bioinformatics; 2022 Jun; 38(13):3488-3489. PubMed ID: 35604082 [TBL] [Abstract][Full Text] [Related]
15. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies. Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541 [TBL] [Abstract][Full Text] [Related]
16. LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity. Xie J; Jeon H; Xin G; Ma Q; Chung D PLoS Comput Biol; 2023 Jul; 19(7):e1011300. PubMed ID: 37428794 [TBL] [Abstract][Full Text] [Related]
17. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
18. GNN-based embedding for clustering scRNA-seq data. Ciortan M; Defrance M Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828 [TBL] [Abstract][Full Text] [Related]
19. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Baran Y; Doğan B Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895 [TBL] [Abstract][Full Text] [Related]
20. scDrugPrio: a framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases. Schäfer S; Smelik M; Sysoev O; Zhao Y; Eklund D; Lilja S; Gustafsson M; Heyn H; Julia A; Kovács IA; Loscalzo J; Marsal S; Zhang H; Li X; Gawel D; Wang H; Benson M Genome Med; 2024 Mar; 16(1):42. PubMed ID: 38509600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]