BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34916081)

  • 1. Outer hair cell driven reticular lamina mechanical distortion in living cochleae.
    Burwood G; He WX; Fridberger A; Ren TY; Nuttall AL
    Hear Res; 2022 Sep; 423():108405. PubMed ID: 34916081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
    He W; Burwood G; Fridberger A; Nuttall AL; Ren T
    Hear Res; 2022 Sep; 423():108407. PubMed ID: 34922772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae.
    He W; Kemp D; Ren T
    Elife; 2018 Sep; 7():. PubMed ID: 30183615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-tone distortion in reticular lamina vibration of the living cochlea.
    Ren T; He W
    Commun Biol; 2020 Jan; 3(1):35. PubMed ID: 31965040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea.
    He W; Burwood G; Porsov EV; Fridberger A; Nuttall AL; Ren T
    Sci Rep; 2022 Nov; 12(1):19810. PubMed ID: 36396720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylate-induced changes in organ of Corti vibrations.
    Strimbu CE; Olson ES
    Hear Res; 2022 Sep; 423():108389. PubMed ID: 34774368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of mechanical harmonic distortion within the organ of Corti in living gerbil cochleae.
    He W; Ren T
    Commun Biol; 2021 Aug; 4(1):1008. PubMed ID: 34433876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prestin derived OHC surface area reduction underlies age-related rescaling of frequency place coding.
    Zhang Y; Lin G; Wang Y; Xue N; Lin X; Du T; Xiong W; Song L
    Hear Res; 2022 Sep; 423():108406. PubMed ID: 34933788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rectifying and sluggish: Outer hair cells as regulators rather than amplifiers.
    van der Heijden M; Vavakou A
    Hear Res; 2022 Sep; 423():108367. PubMed ID: 34686384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct visualization of organ of corti kinematics in a hemicochlea.
    Hu X; Evans BN; Dallos P
    J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea.
    QuiƱones PM; Meenderink SWF; Applegate BE; Oghalai JS
    Hear Res; 2022 Sep; 423():108473. PubMed ID: 35287989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry.
    Ren T; He W; Barr-Gillespie PG
    Nat Commun; 2016 Jan; 7():10282. PubMed ID: 26732830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filtering of acoustic signals within the hearing organ.
    Ramamoorthy S; Zha D; Chen F; Jacques SL; Wang R; Choudhury N; Nuttall AL; Fridberger A
    J Neurosci; 2014 Jul; 34(27):9051-8. PubMed ID: 24990925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.
    Markin VS; Hudspeth AJ
    Biophys J; 1995 Jul; 69(1):138-47. PubMed ID: 7669891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Of mice and chickens: Revisiting the RC time constant problem.
    Iwasa KH
    Hear Res; 2022 Sep; 423():108422. PubMed ID: 34965897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.