These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34916297)

  • 21. Upside-down differentiation and generation of a 'primordial' lower mantle.
    Lee CT; Luffi P; Höink T; Li J; Dasgupta R; Hernlund J
    Nature; 2010 Feb; 463(7283):930-3. PubMed ID: 20164926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ni isotopes provide a glimpse of Earth's pre-late-veneer mantle.
    Xu Y; Szilas K; Zhang L; Zhu JM; Wu G; Zhang J; Qin B; Sun Y; Pearson DG; Liu J
    Sci Adv; 2023 Dec; 9(50):eadj2170. PubMed ID: 38100586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accretion and core formation: constraints from metal-silicate partitioning.
    Wood BJ
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4339-55. PubMed ID: 18826926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts.
    Eiler JM; Schiano P; Kitchen N; Stolper EM
    Nature; 2000 Feb; 403(6769):530-4. PubMed ID: 10676958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen isotopic evidence for early oxidation of silicate Earth.
    Pahlevan K; Schaefer L; Hirschmann MM
    Earth Planet Sci Lett; 2019 Nov; 526():. PubMed ID: 33688096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.
    Rubie DC; Laurenz V; Jacobson SA; Morbidelli A; Palme H; Vogel AK; Frost DJ
    Science; 2016 Sep; 353(6304):1141-4. PubMed ID: 27609889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remnants of early Earth differentiation in the deepest mantle-derived lavas.
    Giuliani A; Jackson MG; Fitzpayne A; Dalton H
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The chlorine isotope composition of Earth's mantle.
    Bonifacie M; Jendrzejewski N; Agrinier P; Humler E; Coleman M; Javoy M
    Science; 2008 Mar; 319(5869):1518-20. PubMed ID: 18339936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle.
    Saal AE; Hauri EH; Langmuir CH; Perfit MR
    Nature; 2002 Oct; 419(6906):451-5. PubMed ID: 12368848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling the isotopic evolution of the Earth.
    Paul D; White WM; Turcotte DL
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2433-74. PubMed ID: 12460475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.
    Brounce M; Stolper E; Eiler J
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):8997-9002. PubMed ID: 28784788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling.
    Jackson MG; Blichert-Toft J; Halldórsson SA; Mundl-Petermeier A; Bizimis M; Kurz MD; Price AA; Harðardóttir S; Willhite LN; Breddam K; Becker TW; Fischer RA
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30993-31001. PubMed ID: 33229590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio.
    Huang S; Jacobsen SB; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4929-34. PubMed ID: 23479630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chondritic xenon in the Earth's mantle.
    Caracausi A; Avice G; Burnard PG; Füri E; Marty B
    Nature; 2016 May; 533(7601):82-5. PubMed ID: 27111512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes.
    Stuart FM; Lass-Evans S; Fitton JG; Ellam RM
    Nature; 2003 Jul; 424(6944):57-9. PubMed ID: 12840756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir.
    Woodhead J; Hergt J; Giuliani A; Maas R; Phillips D; Pearson DG; Nowell G
    Nature; 2019 Sep; 573(7775):578-581. PubMed ID: 31554979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle.
    Yin R; Chen D; Pan X; Deng C; Chen L; Song X; Yu S; Zhu C; Wei X; Xu Y; Feng X; Blum JD; Lehmann B
    Nat Commun; 2022 Feb; 13(1):948. PubMed ID: 35177593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.
    Day JM; Pearson DG; Taylor LA
    Science; 2007 Jan; 315(5809):217-9. PubMed ID: 17218521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The fate of nitrogen during core-mantle separation on Earth.
    Grewal DS; Dasgupta R; Holmes AK; Costin G; Li Y; Tsuno K
    Geochim Cosmochim Acta; 2019 Apr; 251():87-115. PubMed ID: 35153302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capture of nebular gases during Earth's accretion is preserved in deep-mantle neon.
    Williams CD; Mukhopadhyay S
    Nature; 2019 Jan; 565(7737):78-81. PubMed ID: 30518858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.