BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 34916416)

  • 1. Neuronal reprogramming in treating spinal cord injury.
    Chen X; Li H
    Neural Regen Res; 2022 Jul; 17(7):1440-1445. PubMed ID: 34916416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of Functional Neurons After Spinal Cord Injury via
    Puls B; Ding Y; Zhang F; Pan M; Lei Z; Pei Z; Jiang M; Bai Y; Forsyth C; Metzger M; Rana T; Zhang L; Ding X; Keefe M; Cai A; Redilla A; Lai M; He K; Li H; Chen G
    Front Cell Dev Biol; 2020; 8():591883. PubMed ID: 33425896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NG2 Glia Reprogramming Induces Robust Axonal Regeneration After Spinal Cord Injury.
    Tai W; Du X; Chen C; Xu XM; Zhang CL; Wu W
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies and mechanisms of neuronal reprogramming.
    Wan Y; Ding Y
    Brain Res Bull; 2023 Jul; 199():110661. PubMed ID: 37149266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury.
    Silvestro S; Mazzon E
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury.
    Tai W; Wu W; Wang LL; Ni H; Chen C; Yang J; Zang T; Zou Y; Xu XM; Zhang CL
    Cell Stem Cell; 2021 May; 28(5):923-937.e4. PubMed ID: 33675690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NG2 glia reprogramming induces robust axonal regeneration after spinal cord injury.
    Tai W; Du X; Chen C; Xu XM; Zhang CL; Wu W
    iScience; 2024 Feb; 27(2):108895. PubMed ID: 38318363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.
    Li H; Chen G
    Neuron; 2016 Aug; 91(4):728-738. PubMed ID: 27537482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor.
    Zarei-Kheirabadi M; Hesaraki M; Kiani S; Baharvand H
    Stem Cell Res Ther; 2019 Dec; 10(1):380. PubMed ID: 31842989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration Through
    Tai W; Xu XM; Zhang CL
    Front Cell Neurosci; 2020; 14():107. PubMed ID: 32390804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury.
    Chudakova DA; Samoilova EM; Chekhonin VP; Baklaushev VP
    Cells; 2023 Oct; 12(20):. PubMed ID: 37887343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord.
    Tan Z; Qin S; Liu H; Huang X; Pu Y; He C; Yuan Y; Su Z
    J Adv Res; 2024 May; 59():111-127. PubMed ID: 37380102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.
    Ju P; Zhang S; Yeap Y; Feng Z
    Glia; 2012 Nov; 60(11):1801-14. PubMed ID: 22865681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocytic reprogramming combined with rehabilitation strategy improves recovery from spinal cord injury.
    Yang T; Xing L; Yu W; Cai Y; Cui S; Chen G
    FASEB J; 2020 Nov; 34(11):15504-15515. PubMed ID: 32975845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment.
    Yang R; Pan J; Wang Y; Xia P; Tai M; Jiang Z; Chen G
    Front Cell Neurosci; 2022; 16():1005399. PubMed ID: 36467604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury.
    Lee-Kubli CA; Lu P
    Neural Regen Res; 2015 Jan; 10(1):10-6. PubMed ID: 25788906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques.
    Yang H; Liu CC; Wang CY; Zhang Q; An J; Zhang L; Hao DJ
    Mol Neurobiol; 2016 Jul; 53(5):2826-2842. PubMed ID: 25863960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.