BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 34916416)

  • 21. Challenges and Efficacy of Astrocyte-to-Neuron Reprogramming in Spinal Cord Injury: In Vitro Insights and In Vivo Outcomes.
    Niceforo A; Zholudeva LV; Fernandes S; Lane MA; Qiang L
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans
    Guijarro-Belmar A; Viskontas M; Wei Y; Bo X; Shewan D; Huang W
    J Neurosci; 2019 Oct; 39(42):8330-8346. PubMed ID: 31409666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.
    Bonner JF; Steward O
    Brain Res; 2015 Sep; 1619():115-23. PubMed ID: 25591483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?
    Lukovic D; Stojkovic M; Moreno-Manzano V; Jendelova P; Sykova E; Bhattacharya SS; Erceg S
    Stem Cells; 2015 Apr; 33(4):1036-41. PubMed ID: 25728093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Reprogramming for Brain and Spinal Cord Repair.
    Chen G; Wernig M; Berninger B; Nakafuku M; Parmar M; Zhang CL
    eNeuro; 2015; 2(5):. PubMed ID: 26730402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Astrocyte reactivity and astrogliosis after spinal cord injury.
    Okada S; Hara M; Kobayakawa K; Matsumoto Y; Nakashima Y
    Neurosci Res; 2018 Jan; 126():39-43. PubMed ID: 29054466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regionally Specific Human Pre-Oligodendrocyte Progenitor Cells Produce Both Oligodendrocytes and Neurons after Transplantation in a Chronically Injured Spinal Cord Rat Model after Glial Scar Ablation.
    Patil N; Walsh P; Carrabre K; Holmberg EG; Lavoie N; Dutton JR; Parr AM
    J Neurotrauma; 2021 Mar; 38(6):777-788. PubMed ID: 33107383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair.
    Wu L; Li J; Chen L; Zhang H; Yuan L; Davies SJ
    Neural Regen Res; 2013 Aug; 8(24):2236-48. PubMed ID: 25206533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The therapeutic potential of targeting exchange protein directly activated by cyclic adenosine 3',5'-monophosphate (Epac) for central nervous system trauma.
    Guijarro-Belmar A; Domanski DM; Bo X; Shewan D; Huang W
    Neural Regen Res; 2021 Mar; 16(3):460-469. PubMed ID: 32985466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord.
    Wang LL; Zhang CL
    Cell Tissue Res; 2018 Jan; 371(1):201-212. PubMed ID: 29170823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Neuroregenerative Gene Therapy to Reverse Glial Scar Tissue Back to Neuron-Enriched Tissue.
    Zhang L; Lei Z; Guo Z; Pei Z; Chen Y; Zhang F; Cai A; Mok G; Lee G; Swaminathan V; Wang F; Bai Y; Chen G
    Front Cell Neurosci; 2020; 14():594170. PubMed ID: 33250718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain repair from intrinsic cell sources: Turning reactive glia into neurons.
    Torper O; Götz M
    Prog Brain Res; 2017; 230():69-97. PubMed ID: 28552236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord.
    Lien BV; Tuszynski MH; Lu P
    Exp Neurol; 2019 Apr; 314():46-57. PubMed ID: 30653967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury.
    Huang X; Wang C; Zhou X; Wang J; Xia K; Yang B; Gong Z; Ying L; Yu C; Shi K; Shu J; Cheng F; Han B; Liang C; Li F; Chen Q
    CNS Neurosci Ther; 2020 Sep; 26(9):940-951. PubMed ID: 32449258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function.
    Boido M; Garbossa D; Vercelli A
    J Neurosurg Spine; 2011 Jul; 15(1):97-106. PubMed ID: 21456892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation.
    Zheng Y; Mao YR; Yuan TF; Xu DS; Cheng LM
    Neural Regen Res; 2020 Aug; 15(8):1437-1450. PubMed ID: 31997803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.